The (theta, wheel)-free graphs Part IV: Induced paths and cycles - Archive ouverte HAL
Article Dans Une Revue Journal of Combinatorial Theory, Series B Année : 2021

The (theta, wheel)-free graphs Part IV: Induced paths and cycles

Marko Radovanović
  • Fonction : Auteur
  • PersonId : 1085696
Kristina Vušković
  • Fonction : Auteur
  • PersonId : 1085697

Résumé

A hole in a graph is a chordless cycle of length at least 4. A theta is a graph formed by three internally vertex-disjoint paths of length at least 2 between the same pair of distinct vertices. A wheel is a graph formed by a hole and a node that has at least 3 neighbors in the hole. In this series of papers we study the class of graphs that do not contain as an induced subgraph a theta nor a wheel. In Part II of the series we prove a decomposition theorem for this class, that uses clique cutsets and 2-joins. In this paper we use this decomposition theorem to solve several problems related to finding induced paths and cycles in our class.
Fichier principal
Vignette du fichier
1912.00516.pdf (658.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03060185 , version 1 (13-12-2020)

Identifiants

Citer

Marko Radovanović, Nicolas Trotignon, Kristina Vušković. The (theta, wheel)-free graphs Part IV: Induced paths and cycles. Journal of Combinatorial Theory, Series B, 2021, 146, pp.495-531. ⟨10.1016/j.jctb.2020.06.002⟩. ⟨hal-03060185⟩
65 Consultations
133 Téléchargements

Altmetric

Partager

More