From behavior to circuit modeling of light-seeking navigation in zebrafish larvae - Archive ouverte HAL
Article Dans Une Revue eLife Année : 2020

From behavior to circuit modeling of light-seeking navigation in zebrafish larvae

Résumé

Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge in neuroscience. It requires the concurrent development of minimal behavioral and neural circuit models that can quantitatively capture basic sensorimotor operations. Here, we focus on lightseeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how motor and visual stimulation sequences govern the selection of discrete swim-bout events that subserve the fish navigation in the presence of a distant light source. These mechanisms are combined into a comprehensive Markov-chain model of navigation that quantitatively predicts the stationary distribution of the fish's body orientation under any given illumination profile. We then map this behavioral description onto a neuronal model of the ARTR, a small neural circuit involved in the orientation-selection of swim bouts. We demonstrate that this visually-biased decision-making circuit can capture the statistics of both spontaneous and contrast-driven navigation.
Fichier principal
Vignette du fichier
elife-52882-v2.pdf (1.3 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03058463 , version 1 (11-12-2020)

Identifiants

Citer

Sophia Karpenko, Sebastien Wolf, Julie Lafaye, Guillaume Le Goc, Thomas Panier, et al.. From behavior to circuit modeling of light-seeking navigation in zebrafish larvae. eLife, 2020, 9, ⟨10.7554/eLife.52882⟩. ⟨hal-03058463⟩
76 Consultations
35 Téléchargements

Altmetric

Partager

More