SPAWN: An Iterative, Potentials-Based, Dynamic Scheduling and Partitioning Tool - Archive ouverte HAL
Article Dans Une Revue International Journal of Parallel Programming Année : 2020

SPAWN: An Iterative, Potentials-Based, Dynamic Scheduling and Partitioning Tool

Résumé

Many applications of physics modeling use regular meshes on whichcomputations of highly variable cost over time can occur. Distributing the un-derlying cells over manycore architectures is a critical load balancing step thatshould be performed the less frequently possible. Graph partitioning tools areknown to be very effective for such problems, but they exhibit scalability prob-lems as the number of cores and the number of cells increase. We introduce adynamic task scheduling and mesh partitioning approach inspired by physicalparticle interactions. Our method virtually moves cores over a 2D/3D meshof tasks and uses a Voronoi domain decomposition to balance workload. Dis-placements of cores are the result of force computations using a carefully cho-sen pair potential. We evaluate our method against graph partitioning toolsand existing task schedulers with a representative physical application, anddemonstrate the relevance of our approach.
Fichier principal
Vignette du fichier
article.pdf (907.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03052422 , version 1 (18-12-2020)

Identifiants

Citer

Jean-Charles Papin, Christophe Denoual, Laurent Colombet, Raymond Namyst. SPAWN: An Iterative, Potentials-Based, Dynamic Scheduling and Partitioning Tool. International Journal of Parallel Programming, 2020, ⟨10.1007/s10766-020-00677-9⟩. ⟨hal-03052422⟩
59 Consultations
135 Téléchargements

Altmetric

Partager

More