An Inertial Newton Algorithm for Deep Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

An Inertial Newton Algorithm for Deep Learning

Résumé

We introduce an inertial second-order method for machine learning, exploiting the geometry of the loss function while requiring only stochastic approximations function values and generalized gradients. The method features a simple mechanical interpretation and we describe promising numerical results on deep learning benchmarks. We give convergence guarantees in a theoretical framework encompassing most deep learning losses under very mild assumptions.
Fichier principal
Vignette du fichier
indian_neurips19_workshop.pdf (489.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03049921 , version 1 (10-12-2020)

Identifiants

  • HAL Id : hal-03049921 , version 1

Citer

Camille Castera, Jérôme Bolte, Cédric Févotte, Edouard Pauwels. An Inertial Newton Algorithm for Deep Learning. Thirty-third Conference on Neural Information Processing Systems : Beyond First Order Methods in ML (NeurIPS Workshop2019), Neural Information Processing Systems Foundation, Dec 2019, Vancouver, Canada. ⟨hal-03049921⟩
111 Consultations
47 Téléchargements

Partager

More