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Abstract

We introduce an inertial second-order method for machine learning, exploiting the
geometry of the loss function while requiring only stochastic approximations func-
tion values and generalized gradients. The method features a simple mechanical
interpretation and we describe promising numerical results on deep learning bench-
marks. We give convergence guarantees in a theoretical framework encompassing
most deep learning losses under very mild assumptions.

1 Introduction

Training a deep neural network (DNN) is a challenging task that involves minimizing nonsmooth
nonconvex functions which may have millions of parameters. Moreover, due to large datasets,
stochastic approximations (mini-batch approaches) are necessary to compute the loss function or its
gradient. In this context, computing the second-order derivative/objects (as the Hessian) of the loss
function is inconceivable and encourages the design of algorithms that only require approximations
of the gradient. To circumvent this problem several algorithms have been proposed, the most popular
are probably ADAGRAD [13] and ADAM [14]. The first method uses geometrical information to
calibrate the stepsizes while the second one exploits inertial ideas à la “‘Heavy Ball with Friction"
[18]. We propose a new algorithm which takes advantage of both inertial and second-order features
while using only (sub)gradient approximations. We show promising preliminary experiments and
provide cutting edge convergence guarantees for general nonsmooth nonconvex learning problems.2

Setting. In the rest of the paper, we consider DNNs which are locally Lipschitz continuous in their
parameters f : (x, θ) ∈ RM × RP 7→ y ∈ RD. The variable θ ∈ RP represents parameters of
the model (P can be very large), while x ∈ RM and y ∈ RD represent input and output data. For
instance, x may represent an image and y a label explaining some of its content. This encompasses
many types of networks (e.g., a composition of feed-forward, convolutional, recurrent networks with
ReLU, sigmoid, or tanh activation functions). Considering a dataset of N samples (xn, yn)n=1,...,N .
Training the NN amounts to finding a value of the parameter θ such that, for each input data xn of
the dataset, the output f(xn, θ) of the model predicts the value yn with good accuracy. To do so, we
follow the traditional approach of minimizing an empirical risk loss function:

RP 3 θ 7→ J (θ) =
∑N

n=1
l(f(xn, θ), yn), where l : RD × RD → R is a locally Lipschitz

continuous dissimilarity measure (e.g., distances on RD: l(y1, y2)2 = ‖y1 − y2‖22).
∗Last three authors are listed in alphabetical order.
2This work is adapted from an extended version [8].
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Figure 1: INDIAN applied to the nonsmooth functionJ (θ1, θ2) = 100(θ2−|θ1|)2+|1−θ1|. Subplots
(a-c) represent the trajectories of the parameters (θ1, θ2) in R2 for three choices of hyperparameters α
and β (starting from the black dot). Subplot (d) displays the values of the objective function J (θ1, θ2)
for the three settings considered.

INDIAN algorithm. Before addressing the nonsmooth stochastic case (see (4)), we present the
smooth deterministic version: for an initial vector of parameters θ0 ∈ RP , we introduce an auxiliary
variable ψ0 ∈ RP , and iterate for k ∈ N:

(INDIAN)

θk+1 = θk + γk

(
( 1
β − α)θk − 1

βψk − β∇J (θk)
)

ψk+1 = ψk + γk

(
( 1
β − α)θk − 1

βψk

) (1)

where (γk)k∈N is a user-defined sequence of stepsizes (see Assumption 1 and Remark 2). This
algorithm is an explicit discretization of an ordinary differential equation (ODE) introduced in [1]
(see [6] for more details about discretization of ODEs).

(DIN)

{
θ̇(t) + β∇J (θ(t)) + (α− 1

β )θ(t) + 1
βψ(t) = 0,

ψ̇(t) + (α− 1
β )θ(t) + 1

βψ(t) = 0, a.e. on (0,+∞).
(2)

A notable fact is that the first coordinate θ of any bounded solution of (2) asymptotically converges to
critical points of J [1]. Moreover, when J is twice continuously differentiable, (2) is equivalent to
the following second order ODE strongly related to the laws of mechanics:

θ̈(t)︸︷︷︸
Inertial term

+ α θ̇(t)︸ ︷︷ ︸
Friction term

+β∇2J (θ(t))θ̇(t)︸ ︷︷ ︸
Newtonian effects

+∇J (θ(t))︸ ︷︷ ︸
Gravity effect

= 0, t ≥ 0. (3)

The introduction of the twisted phase variable ψ = −βθ̇ − β2∇J (θ)− (αβ − 1)θ in (2) allows to
rewrite the second order dynamics (3) without explicitly involving the Hessian∇2J . Equation (3)
describes the movement of a mass point with coordinates θ(t) evolving on the landscape of the loss
function J : θ̈ is the acceleration of the particle,∇J (θ) represents a gravity effect, αθ̇ corresponds to
a viscous friction term and β∇2J (θ)θ̇ acts like a Newtonian damping. This analogy provides strong
insights into the meaning of the hyperparameters α and β, which are damping coefficients allowing
to control the trajectory and bring it to a flat valley of J (local or global minima). This feature is
illustrated in Figure 1.

2 Theoretical guarantees of INDIAN for DL losses

A general structure for DL losses: Tameness. Tameness refers to a geometrical property satisfied
by most finite-dimensional optimization problems met in practice, in particular in ML. Prominent
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classes of tame objects are piecewise linear objects, piecewise polynomial, or semi-algebraic objects
but the notion is much more general: Sets or functions are called tame when they can be described by
a finite number of basic formulas/inequalities/Boolean operations involving standard functions such
as polynomial, exponential, or max functions. We refer to [2] for illustrations, recipes and examples
within a general optimization setting or [11] for illustrations in the context of neural networks. One is
referred to [10, 12, 21] for foundational material.

All finite-dimensional deep learning optimization models we are aware of yield tame losses J .
Consider for example a DNN with classical activation functions (ReLU, sigmoid, SQNL, tanh, soft
plus, soft clipping, . . . ), and a standard dissimilarity function l such as `p norms or cross-entropy,
then, the corresponding loss J is tame (see [11] for more examples). Hence tameness is a very mild
assumption. It can be seen as a "non pathological" condition which is required to handle convergence
analysis in the nonsmooth setting. The reader not comfortable with this notion may safely replace it
by "ReLU network with square loss" to get a first understanding of our results.3

Handling the nonsmoothness of DL losses. The classical definition of the subgradient does not
suit nonconvex nonsmooth functions (for example x 7→ −|x| has empty subgradient at 0). To
overcome this problem we introduce the Clarke subdifferential: given a locally Lipschitz continuous
function F between finite dimensional spaces, we define for each θ its Clarke subdifferential ∂F (θ)
as the closed convex envelope of the limits of neighboring gradients (see [9] for a formal definition).
This makes this set compact, convex and nonempty. Let us point out that the classical subgradient is
included in the Clarke subgradient.

In order to compute the subdifferential of J and to cope with large datasets, J can be approximated
by mini-batches, reducing the computational cost. However, unlike gradients, there is no sum-rule
for Clarke subdifferentials (example: 0 = | · | − | · |), which makes the traditional "subgradient plus
centered noise" approach unfit to the study of mini-batch subsampling methods in DL. Thus we
introduce a new notion, for any B ⊂ {1, . . . , N}, set

JB : θ 7→
∑
n∈B

l(f(xn, θ), yn), DJB =
∑
n∈B

∂ [l(f(xn, ·), yn)] , DJ =

N∑
n=1

∂ [(f(xn, ·), yn)] .

Observe that, for each B, we have DJB ⊃ ∂JB and that JB is differentiable almost everywhere
with DJB = ∂JB = {∇JB}, see [9]. For convenience, a point satisfying DJ (θ) 3 0 will be called
D-critical. This vocable is motivated by favourable properties whose statements and proofs are
available in the extended version of this paper: a good calculus along curves and the existence of
a nonsmooth Sard’s theorem (this is where tameness plays a crucial role). To our knowledge, this
notion has not previously been used in the literature. To model the mini-batch approximation, we
consider a sequence (Bk)k∈N of nonempty subsets of {1, . . . , N} chosen independently, uniformly at
random with replacement and a sequence of positive stepsizes (γk)k∈N. In practice vk ∈ DJBk

(θk)
is usually computed with a backpropagation algorithm, as in the seminal work of [20]. This results in
a stochastic approximation of INDIAN applied deterministically to J (batch version). This can be
seen by observing that the vectors vk above may be written ṽk + ηk, where ṽk ∈ DJ (θk) and ηk
compensates for the missing subgradients and can be seen as a zero-mean noise. Hence, INDIAN
admits the following general abstract stochastic formulation:

(INDIANg)

µk+1 = µk + γk

(
( 1
β − α)µk − 1

βφk − βwk + ξk

)
φk+1 = φk + γk

(
( 1
β − α)µk − 1

βφk

) with wk ∈ DJ (µk) (4)

where (ξk)k∈N is a martingale difference noise sequence adapted to the filtration induced by (random)
iterates up to k, θ0, φ0 are arbitrary initial conditions, and α > 0 and β > 0 are parameters of the
algorithm (see Numerical experiments for example of choices of α and β).

Convergence results. To establish convergence4, we start with the following standing assumption.
Assumption 1 (Vanishing stepsizes). The stepsize sequence γk is positive, diverges (

∑
γk = +∞)

and satisfies γk = o
(

1
log k

)
, that is lim sup

k→+∞
|γk log k| = 0.

3From now on we fix an o-minimal structure, an object is said to be tame if it belongs to this structure.
4All the proofs and theoretical tools are available in an extended version of this work [8].
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Figure 2: Optimization and accuracy results using NiN with CIFAR-100. Left: logarithm of the loss
function J (θ). Right: percentage accuracy on the test set. Solid lines represent mean values and pale
surfaces represent the best and worst runs in terms of training loss and validation accuracy over five
random initializations.

Typical admissible choices are γk = C(k + 1)−a with a ∈ (0, 1], C > 0. The main theoretical result
of this paper follows.
Theorem 1 (INDIANg converges to the set of D-critical points of J ). Assume that J is locally
Lipschitz continuous, tame and that the stepsizes satisfy Assumption 1. Let (θk, ψk) generated by (4)
with an initial condition (θ0, ψ0) and assume that there exists C > 0 such that supk ‖(θk, ψk)‖ ≤ C
almost surely.
Then, almost surely, any accumulation point θ̄ of a realization of the sequence (θk)k∈N satisfies
DJ (θ̄) 3 0. In addition (J (θk))k∈N converges.

Remarks. (a) [Proof sketch:] The proof relies on the Lyapunov analysis of (3) in [1]. Tameness
assumption provides nonsmooth calculus rules [11] and a nonsmooth Sard theorem [5], which allow
to invoke the asymptotic analysis of stochastic approximation in [4].
(b) [Noise and Stepsizes]: Assumption 1 along with the finite sum structure of J allow much
larger stepsizes than the usual Robbins-Monro condition [19], typically of the order O(1/

√
k), see

[4, Remark 1.5] and [3] for more details. Other variants could be considered depending on the
assumptions on the noise, see [4].
(c) [Convergence to critical points]: Observe that when J is differentiable, limit points are simply
critical points. Moreover, let us mention that for general J , beingD-critical (or critical) is a necessary
condition for being a local minimum.

3 Numerical Experiments

In this section, we use INDIAN for a concrete DL problem. We train a DNN for image classification
using the CIFAR-100 dataset [15]. Regarding the network, we use a slightly modified version (with
P = 106 parameters to optimize) of Network in Network (NiN) [17]. We compare our algorithm
to the classical stochastic gradient descent (SGD) algorithm, ADAGRAD [13] and ADAM [14].
The full methodology can be found in the supplementary materials. We present the results for three
different choices of hyperparameters of INDIAN using the intuition given by (3), even though there
are many other satisfying choices of parameters. INDIAN is available as an optimizer for Pytorch,
Keras and Tensorflow: https://github.com/camcastera/Indian-for-DeepLearning/ [7].

Results. Our result are representative of what can be obtained with a moderately large network
on CIFAR-100 with reasonable parameter tuning (though higher accuracy can be achieved by much
larger networks). Fig. 2 (left) shows that ADAM and INDIAN (with adequate tuning) can outperform
SGD and ADAGRAD for the training. Thus, INDIAN proves an efficient optimizer for this problem.
Although ADAM’s and INDIAN’s performances are similar, the latter is more versatile since its
hyperparameters are fully tunable compared to ADAM’s adaptive stepsizes. Fig. 2 (right) highlights
a special aspect of INDIAN. Indeed, every versions of INDIAN present better testing performances
compared to the ones trained with usual optimizers, besides, the evolution of the accuracy depends on
the choice of α and β. This suggests that the tuning of (α, β) might be a new regularization strategy
in addition to usual methods such as dropout [22] and weight decay [16].
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A Full Methodology of Section 3

We train a DNN for image classification using the CIFAR-100 dataset [15]. This dataset is composed
of 60, 000 small colored images of size 32 × 32 × 3 each associated with a label (airplane, cat,
etc.). We split the dataset into 50, 000 images for the training procedure and use the 10, 000 other
images to validate the model. Regarding the network, we use a sightly modified version of Network
in Network of [17]. It is a very popular network that consists of 2D-convolutional layers with
max-pooling and dense layers with ReLU activation functions, our version has 1 million parameters
to optimize. The loss function used is the categorical cross-entropy. We compare our algorithm to the
classical stochastic gradient descent (SGD) algorithm, and both the very popular ADAGRAD [13]
and ADAM [14] algorithms. At each iteration, we compute the approximation of ∂J (θ) on a subset
B ⊂ {1, . . . , 50000} of size 32. To do a fair comparison, each algorithm is initialized with the same
random weights (following a normal distribution). To get relevant results, this process is done for five
different random initializations of the network.

The sequence of steps γk has to meet Assumption 1 and we chose the classical schedule γk = γ0√
k+1

for both INDIAN and SGD, where γ0 is the initial stepsize. Regarding ADAGRAD and ADAM,
starting from γ0 they have there own adaptive procedure to generate (γk)k∈N, see [13, 14] for more
details. For all four algorithms, choosing the right initial step length γ0 is often critical in terms of
efficiency. We use a grid-search for each algorithm and chose the initial stepsize that most decreases
the loss function over ten epochs (ten complete passes over the data). Then we run each algorithm
during 200 epochs with a batchsize of size 32.

6


	Introduction
	Theoretical guarantees of INDIAN for DL losses
	Numerical Experiments
	Full Methodology of Section 3

