Improved error estimates for Hybrid High-Order discretizations of Leray-Lions problems - Archive ouverte HAL Access content directly
Journal Articles Calcolo Year : 2021

Improved error estimates for Hybrid High-Order discretizations of Leray-Lions problems

Abstract

We derive novel error estimates for Hybrid High-Order (HHO) discretizations of Leray-Lions problems set in $W^{1, p}$ with $p\in(1, 2]$. Specifically, we prove that, depending on the degeneracy of the problem, the convergence rate may vary between $(k + 1)(p − 1)$ and $(k + 1)$, with $k$ denoting the degree of the HHO approximation. These regime-dependent error estimates are illustrated by a complete panel of numerical experiments.
Fichier principal
Vignette du fichier
hholli.pdf (336.72 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03049154 , version 1 (09-12-2020)
hal-03049154 , version 2 (04-06-2021)
hal-03049154 , version 3 (09-01-2022)

Identifiers

Cite

Daniele Antonio Di Pietro, Jérôme Droniou, André Harnist. Improved error estimates for Hybrid High-Order discretizations of Leray-Lions problems. Calcolo, 2021, 58 (19), ⟨10.1007/s10092-021-00410-z⟩. ⟨hal-03049154v3⟩
158 View
109 Download

Altmetric

Share

Gmail Facebook X LinkedIn More