On optimizing scalar self-rebalancing trees - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

On optimizing scalar self-rebalancing trees

Résumé

Balanced trees are pervasive and very often found in databases or other systems which are built around querying non-static data. In this paper, we show that trees implemented as a collection of pointers shows bad data locality, poor cache performance and suffer from a lack of parallelism opportunities. We propose an alternative implementation based on arrays. Both implementations appear to be equivalently efficient time-wise. This new layout exposes new parallelism opportunities which can be then exploited by an optimizing polyhedral compiler.
Fichier principal
Vignette du fichier
iannetta.2020.compas.pdf (176.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03048742 , version 1 (09-12-2020)

Identifiants

  • HAL Id : hal-03048742 , version 1

Citer

Paul Iannetta, Laure Gonnord, Lionel Morel. On optimizing scalar self-rebalancing trees. COMPAS 2020 - Conférence francophone d'informatique en Parallélisme, Architecture et Système, Jun 2020, Lyon, France. pp.1-7. ⟨hal-03048742⟩
97 Consultations
100 Téléchargements

Partager

More