Dynamical Simulations of Coarse Grain Polymeric Systems: Rouse and Entangled Dynamics
Résumé
A particle-based, theoretically informed coarse-grained model for multicomponent polymeric systems is proposed to explore the dynamics of entangled polymeric melts. Entanglements are treated at the two-molecule level, through slip-springs that couple the dynamics of neighboring pairs of chains. Their inclusion in the model changes its behavior from Rouse to entangled, with scaling laws for the mean-square displacement and shear viscosity consistent with those observed in tube theories and in experiments.