Quantum Quasi-Monte Carlo Technique for Many-Body Perturbative Expansions - Archive ouverte HAL
Article Dans Une Revue Physical Review Letters Année : 2020

Quantum Quasi-Monte Carlo Technique for Many-Body Perturbative Expansions

Marjan Maček
Philipp Dumitrescu
Corentin Bertrand
Bill Triggs

Résumé

High order perturbation theory has seen an unexpected recent revival for controlled calculations of quantum many-body systems, even at strong coupling. We adapt integration methods using low-discrepancy sequences to this problem. They greatly outperform state-of-the-art diagrammatic Monte Carlo. In practical applications, we show speed-ups of several orders of magnitude with scaling as fast as 1/N in sample number N ; parametrically faster than 1/ √ N in Monte Carlo. We illustrate our technique with a solution of the Kondo ridge in quantum dots, where it allows large parameter sweeps.
Fichier principal
Vignette du fichier
2002.12372.pdf (1.44 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03044608 , version 1 (07-12-2020)

Identifiants

Citer

Marjan Maček, Philipp Dumitrescu, Corentin Bertrand, Bill Triggs, Olivier Parcollet, et al.. Quantum Quasi-Monte Carlo Technique for Many-Body Perturbative Expansions. Physical Review Letters, 2020, 125 (4), pp.047702. ⟨10.1103/PhysRevLett.125.047702⟩. ⟨hal-03044608⟩
107 Consultations
203 Téléchargements

Altmetric

Partager

More