Regret minimization in stochastic non-convex learning via a proximal-gradient approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Regret minimization in stochastic non-convex learning via a proximal-gradient approach

Résumé

Motivated by applications in machine learning and operations research, we study regret minimization with stochastic first-order oracle feedback in online constrained, and possibly non-smooth, non-convex problems. In this setting, the minimization of external regret is beyond reach, so we focus on a local regret measure defined via a proximal-gradient mapping. To achieve no (local) regret in this setting, we develop a prox-grad method based on stochastic first-order feedback, and a simpler method for when access to a perfect first-order oracle is possible. Both methods are min-max order-optimal, and we also establish a bound on the number of prox-grad queries these methods require. As an important application of our results, we also obtain a link between online and offline non-convex stochastic optimization manifested as a new prox-grad scheme with complexity guarantees matching those obtained via variance reduction techniques.
Fichier principal
Vignette du fichier
OnlineProxGrad.pdf (502.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03043872 , version 1 (07-12-2020)

Identifiants

  • HAL Id : hal-03043872 , version 1

Citer

Nadav Hallak, Panayotis Mertikopoulos, Volkan Cevher. Regret minimization in stochastic non-convex learning via a proximal-gradient approach. ICML 2021 - 38th International Conference on Machine Learning, Jul 2021, Vienna, Austria. ⟨hal-03043872⟩
110 Consultations
130 Téléchargements

Partager

More