Free Rota-Baxter family algebras and Free (tri)dendriform family algebras
Résumé
In this paper, we first construct the free Rota-Baxter family algebra generated by some set $X$ in terms of typed angularly $X$-decorated planar rooted trees. As an application, we obtain a new construction of the free Rota-Baxter algebra only in terms of angularly decorated planar rooted trees (not forests), which is quite different from the known construction via angularly decorated planar rooted forests by K. Ebrahimi-Fard and L. Guo. We then embed the free dendriform (resp. tridendriform) family algebra into the free Rota-Baxter family algebra of weight zero (resp. one). Finally, we prove that the free Rota-Baxter family algebra is the universal enveloping algebra of the free (tri)dendriform family algebra.