On $C^0$-persistent homology and trees - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

On $C^0$-persistent homology and trees

Résumé

The study of the topology of the superlevel sets of stochastic processes on [0, 1] in probability led to the introduction of R-trees which characterize the connected components of the superlevel-sets. We provide a generalization of this construction to more general deterministic continuous functions on some path-connected, compact topological set X and reconcile the probabilistic approach with the traditional methods of persistent homology. We provide an algorithm which functorially links the tree T f associated to a function f and study some invariants of these trees, which in 1D turn out to be linked to the regularity of f .
Fichier principal
Vignette du fichier
paper1.pdf (478.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03040819 , version 1 (04-12-2020)
hal-03040819 , version 2 (07-12-2020)
hal-03040819 , version 3 (23-05-2022)

Identifiants

  • HAL Id : hal-03040819 , version 2

Citer

Daniel Perez. On $C^0$-persistent homology and trees. 2020. ⟨hal-03040819v2⟩
135 Consultations
99 Téléchargements

Partager

More