Finite orbits for large groups of automorphisms of projective surfaces - Archive ouverte HAL
Article Dans Une Revue Compositio Mathematica Année : 2023

Finite orbits for large groups of automorphisms of projective surfaces

Résumé

We study finite orbits for non-elementary groups of automorphisms of compact projective surfaces. In particular we prove that if the surface and the group are defined over a number field k and the group contains parabolic elements, then the set of finite orbits is not Zariski dense, except in certain very rigid situations, known as Kummer examples. Related results are also established when k=C. An application is given to the description of "canonical vector heights" associated to such automorphism groups.
Fichier principal
Vignette du fichier
finite-orbits.pdf (655.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03035398 , version 1 (02-12-2020)

Identifiants

Citer

Serge Cantat, Romain Dujardin. Finite orbits for large groups of automorphisms of projective surfaces. Compositio Mathematica, 2023, 160 (1), pp.120-175. ⟨10.1112/S0010437X23007613⟩. ⟨hal-03035398⟩
72 Consultations
130 Téléchargements

Altmetric

Partager

More