Separatrix crossing and symmetry breaking in NLSE-like systems due to forcing and damping
Résumé
We theoretically and experimentally examine the effect of forcing and damping on systems that can be described by the nonlinear Schrödinger equation (NLSE), by making use of the phase-space predictions of the three-wave truncation. In the latter, the spectrum is truncated to only the fundamental frequency and the upper and lower sidebands. Our experiments are performed on deep water waves, which are better described by the higher-order NLSE, the Dysthe equation. We therefore extend our analysis to this system. However, our conclusions are general for NLSE
systems. By means of experimentally obtained phasespace trajectories, we demonstrate that forcing and damping cause a separatrix crossing during the evolution. When the system is damped, it is pulled outside the separatrix, which in the real space corresponds to a phase-shift of the envelope and therefore doubles the period of the Fermi–Pasta–Ulam–Tsingou recurrence cycle. When the system is forced by the wind, it is pulled inside the separatrix, lifting the phase-shift. Furthermore, we observe a growth and decay cycle for modulated plane waves that are conventionally considered stable. Finally,we give a theoretical demonstration that forcing the NLSE system.
Fichier principal
Eeltink2020_Article_SeparatrixCrossingAndSymmetryB (1).pdf (2.76 Mo)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|