Modelling self-similar parabolic pulses in optical fibres with a neural network - Archive ouverte HAL
Article Dans Une Revue Results in Optics Année : 2021

Modelling self-similar parabolic pulses in optical fibres with a neural network

Résumé

We expand our previous analysis of nonlinear pulse shaping in optical fibres using machine learning [Opt. Laser Technol., 131 (2020) 106439] to the case of pulse propagation in the presence of gain/loss, with a special focus on the generation of self-similar parabolic pulses. We use a supervised feedforward neural network paradigm to solve the direct and inverse problems relating to the pulse shaping, bypassing the need for direct numerical solution of the governing propagation model.
Fichier principal
Vignette du fichier
RIO - Boscolo - 2021.pdf (2.61 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03032689 , version 1 (01-12-2020)
hal-03032689 , version 2 (28-02-2021)

Licence

Identifiants

Citer

Sonia Boscolo, John M. Dudley, Christophe Finot. Modelling self-similar parabolic pulses in optical fibres with a neural network. Results in Optics, 2021, 3, pp.100066. ⟨10.1016/j.rio.2021.100066⟩. ⟨hal-03032689v2⟩
77 Consultations
86 Téléchargements

Altmetric

Partager

More