Dynamic Numerical Investigation of Random Packing for Spherical and Nonconvex Particles
Résumé
We simulate the sedimentation in a parallelepipedic container of spheres and nonconvex particles constituted by two overlapping spheres. We use the self-written code SCoPI. Thanks to an efficient handling of contacts between particles, it allowed us to consider up to 100, 000 spheres and 10, 000 nonconvex particles. The packing fraction (in bulk and close to a wall) as well as the mean value and the distribution of contacts of the final packings are reported. The results obtained for the classical case of spherical particles (packing fraction: 63.7%, mean number of contacts: 6) are in agreement with previous studies and validate the algorithm. The packing fraction for nonconvex particles increases and then decreases with respect to the aspect ratio, which is similar to the ellipsoid (convex) case. The number of contacts is different from the number of neighbours, which is of course never the case for spherical particles (convex particles). The number of contacts is discontinuous when slightly increasing the aspect ratio from the spherical case: it is equal to 6 in the spherical case and to 10 in the nonconvex case. These values correspond to the isocounting values, i.e. the number of contacts is twice the number of degrees of freedom. This contrasts with the ellipsoid case, where it sharply but continuously increases. Concerning the number of neighbours, it continuously increases for small aspect ratio (which is similar to the convex particle case), but decreases for higher aspect ratio.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|