UVB LEDs Grown by Molecular Beam Epitaxy Using AlGaN Quantum Dot - Archive ouverte HAL Access content directly
Journal Articles Crystals Year : 2020

UVB LEDs Grown by Molecular Beam Epitaxy Using AlGaN Quantum Dot

Abstract

AlGaN based light emitting diodes (LEDs) will play a key role for the development of applications in the ultra-violet (UV). In the UVB region (280–320 nm), phototherapy and plant lighting are among the targeted uses. However, UVB LED performances still need to be improved to reach commercial markets. In particular, the design and the fabrication process of the active region are central elements that affect the LED internal quantum efficiency (IQE). We propose the use of nanometer-sized epitaxial islands (i.e., so called quantum dots (QDs)) to enhance the carrier localization and improve the IQE of molecular beam epitaxy (MBE) grown UVB LEDs using sapphire substrates with thin sub-μm AlN templates. Taking advantage of the epitaxial stress, AlGaN QDs with nanometer-sized (≤10 nm) lateral and vertical dimensions have been grown by MBE. The IQE of the QDs has been deduced from temperature dependent and time resolved photoluminescence measurements. Room temperature IQE values around 5 to 10% have been found in the 290–320 nm range. QD-based UVB LEDs were then fabricated and characterized by electrical and electroluminescence measurements. On-wafer measurements showed optical powers up to 0.25 mW with external quantum efficiency (EQE) values around 0.1% in the 305–320 nm range.
Fichier principal
Vignette du fichier
crystals-10-01097-v2.pdf (2.64 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03030472 , version 1 (25-05-2021)

Licence

Identifiers

Cite

Julien Brault, Mohamed Al Khalfioui, Samuel Matta, Thi Huong Ngo, S. Chenot, et al.. UVB LEDs Grown by Molecular Beam Epitaxy Using AlGaN Quantum Dot. Crystals, 2020, 10 (12), pp.1097. ⟨10.3390/cryst10121097⟩. ⟨hal-03030472⟩
70 View
47 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More