Localization from inertial data and sporadic position measurements - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Localization from inertial data and sporadic position measurements

Résumé

A novel estimation strategy for inertial navigation in indoor/outdoor environments is proposed with a specific attention to the sporadic nature of the non-periodic measurements. After introducing the inertial navigation model, we introduce an observer providing an asymptotic estimate of the plant state. We use a hybrid dynamical systems representation for our results, in order to provide an effective, and elegant theoretical framework. The estimation error dynamics with the proposed observer shows a peculiar cascaded interconnection of three subsystems (allowing for intuitive gain tuning), with perturbations occurring either on the jump or on the flow dynamics (depending on the specific subsystem under consideration). For this structure, we show global exponential stability of the error dynamics. Hardware-in-the-loop results confirm the effectiveness of the proposed solution.
Fichier principal
Vignette du fichier
1747_Sferlazza.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03027934 , version 1 (27-11-2020)

Identifiants

Citer

Antonino Sferlazza, Luca Zaccarian, Giovanni Garraffa, Filippo D’ippolito. Localization from inertial data and sporadic position measurements. 21st IFAC World Congress, IFAC 2020, Jul 2020, Berlin, Germany. pp.5976-5981, ⟨10.1016/j.ifacol.2020.12.1654⟩. ⟨hal-03027934⟩
71 Consultations
50 Téléchargements

Altmetric

Partager

More