Symmetry classes in piezoelectricity from second-order symmetrie - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Symmetry classes in piezoelectricity from second-order symmetrie

Résumé

The piezoelectricity law is a constitutive model that describes how mechanical and electric fields are coupled within a material. In its linear formulation this law comprises three constitutive tensors of increasing order: the second order permittivity tensor S, the third order piezoelectricity tensor P and the fourth-order elasticity tensor C. In a first part of the paper, the symmetry classes of the piezoelectricity tensor alone are investigated. Using a new approach based on the use of the so-called clips operations, we establish the 16 symmetry classes of this tensor and provide their associated normal forms. Second order orthogonal transformations (plane symmetries and π-angle rotations) are then used to characterize and classify directly 11 out of the 16 symmetry classes of the piezoelectricity tensor. An additional step to distinguish the remaining classes is proposed
Fichier principal
Vignette du fichier
2020_11_20_Symmetry_Classes_Piezo_HAL_v1.pdf (564.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03021383 , version 1 (24-11-2020)
hal-03021383 , version 2 (21-01-2021)

Identifiants

Citer

Marc Olive, Nicolas Auffray. Symmetry classes in piezoelectricity from second-order symmetrie. 2020. ⟨hal-03021383v1⟩
97 Consultations
350 Téléchargements

Altmetric

Partager

More