Forward Event-Chain Monte Carlo: Fast sampling by randomness control in irreversible Markov chains - Archive ouverte HAL
Article Dans Une Revue Journal of Computational and Graphical Statistics Année : 2020

Forward Event-Chain Monte Carlo: Fast sampling by randomness control in irreversible Markov chains

Résumé

Irreversible and rejection-free Monte Carlo methods, recently developed in Physics under the name Event-Chain and known in Statistics as Piecewise Deterministic Monte Carlo (PDMC), have proven to produce clear acceleration over standard Monte Carlo methods, thanks to the reduction of their random-walk behavior. However, while applying such schemes to standard statistical models, one generally needs to introduce an additional randomization for sake of correctness. We propose here a new class of Event-Chain Monte Carlo methods that reduces this extra-randomization to a bare minimum. We compare the efficiency of this new methodology to standard PDMC and Monte Carlo methods. Accelerations up to several magnitudes and reduced dimensional scalings are exhibited.
Fichier principal
Vignette du fichier
1702.08397.pdf (1.08 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03019911 , version 1 (16-01-2024)

Identifiants

Citer

Manon Michel, Alain Durmus, Stéphane Sénécal. Forward Event-Chain Monte Carlo: Fast sampling by randomness control in irreversible Markov chains. Journal of Computational and Graphical Statistics, 2020, ⟨10.1080/10618600.2020.1750417⟩. ⟨hal-03019911⟩
87 Consultations
23 Téléchargements

Altmetric

Partager

More