Local monodromy formula of Hadamard products
Résumé
We find an explicit general formula for the iterated local monodromy of singularities of the Hadamard product of functions with integrable singularities. The formula implies the invariance by Hadamard product of the class of functions with integrable singularities with recurrent monodromies. In particular, it implies the recurrence of the local monodromy of functions with finite Hadamard grade as defined by Allouche and Mendès-France. We give other examples of natural classes of functions with recurrent monodromies, functions with algebro-logarithmic singularities, and more generally with polylogarithm monodromies. We sketch applications to elliptic integrals, hypergeometric functions, and to fractional integration.
Fichier principal
Hadamard5.pdf (203.78 Ko)
Télécharger le fichier
mareacion.eps (15.22 Ko)
Télécharger le fichier
moving2.eps (36.68 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|