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LOCAL MONODROMY FORMULA OF HADAMARD PRODUCTS

RICARDO PÉREZ-MARCO

Abstract. We find an explicit general formula for the iterated local monodromy of
singularities of the Hadamard product of functions with integrable singularities. The
formula implies the invariance by Hadamard product of the class of functions with
integrable singularities with recurrent monodromies. In particular, it implies the
recurrence of the local monodromy of functions with finite Hadamard grade as de-
fined by Allouche and Mendès-France. We give other examples of natural classes of
functions with recurrent monodromies, functions with algebro-logarithmic singular-
ities, and more generally with polylogarithm monodromies. We sketch applications
to elliptic integrals, hypergeometric functions, and to fractional integration.

Figure 1. “El mundo de la mareación” (2003, drawings from my 5 years old son Riki).
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1. Introduction.

Given two power series

F (z) = A0 + A1z + A2z
2 + . . . =

∑

n≥0

An z
n

G(z) = B0 +B1z +B2z
2 + . . . =

∑

n≥0

Bn z
n

their classical Hadamard product is defined by

F ⊙G(z) = A0B0 + A1B1z + A2B2z
2 + . . . =

∑

n≥0

AnBn z
n .

In a previous article [9] we gave a formula for the monodromies of the singularities
of the Hadamard product F ⊙G of two holomorphic functions F and G with isolated
singularities (α), resp. (β), with holomorphic monodromies ∆αF and ∆βG. More
precisely, ∆αF = F1 − F where F1 is the branch obtained as the local analytic
continuation of F around α (following a loop of winding number 1 with respect to
α), and the monodromy ∆αF is holomorphic if it defines a holomorphic germ at the
point α. We consider also the operator Σα = Id+∆α, thus F1 = ΣαF = F +∆αF .

The singularity at α is integrable, when we have

S-limz→α(z − α)F (z) → 0

where the limit is a Stolz limit at α, that is, z → α with arg(z−α) bounded. In this
case we have

∫

Cǫ

F (u)du → 0

for a loop Cǫ around α with Cǫ → 0 when ǫ → 0. We prove the following result:

Theorem 1.1 (Hadamard iterated monodromy formula for integrable singularities).
We consider F and G holomorphic germs at 0 with respective set of singularities (α)
and (β) in C. We assume that the singularities are isolated and integrable. For k ≥ 0,
we consider the different branches around the singularities Fk = Σk

αF and Gk = Σk
βG.

Then the set of singularities of the principal branch of F ⊙ G is contained in the
product set (γ) = (αβ) and is composed by isolated singularities, and for N ≥ 1 we
have the formula

(1) (ΣN
γ − Id)(F ⊙G)(z) = − 1

2πi

∑

α,β
αβ=γ

N−1
∑

k=0

∫ z/β

α

∆α

(

Σk
αF
)

(u) .∆β

(

Σk
βG
)

(z/u)
du

u

For N = 1 this is the same formula from [9] except for the absence of the residual
part, and generalized to integrable singularities (it was proved there for holomorphic
singularities, which are not necessarily integrable and can produce a residual part).
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We use the following notation for the integral convolution1

F ⋆̄ G = − 1

2πi

∫ z/β

α

F (u) . G(z/u)
du

u

Then, the main formula can be written as

(ΣN
γ − Id)(F ⊙G)(z) =

N−1
∑

k=0

∑

αβ=γ

∆αΣ
k
αF ⋆̄ ∆βΣ

k
βG

We have another form of the formula that follows from formula (1) and the formal
identity

∆Σk = Σk+1 − Σk = (Σk+1 − Id)− (Σk − Id)

Proposition 1.2. We have

∆γΣ
k
γ(F ⊙G) =

∑

αβ=γ

∆αΣ
k
αF ⋆̄ ∆βΣ

k
βG

Therefore, the operators (∆γΣ
k
γ)k∈Z define morphism from the Hadamard algebra to

the integral convolution algebra in the associated monodromy spaces.

As Corollary, by induction, we get the formula for the iterated monodromy for a
Hadamard product with several factors:

Corollary 1.3. We have

(2) (ΣN
γ − Id)(F1 ⊙ F2 ⊙ . . .⊙ Fn) =

N−1
∑

k=0

∑

α1...αn=γ

∆α1
Σk

α1
F1 ⋆̄ . . . ⋆̄ ∆α1

Σk
αn

Fn

2. Proof of the iterated monodromy formula.

2.1. Geometric proof. The proof follows the same lines than the proof given in [9]
by starting with Plancherel-Hadamard convolution formula

(3) F ⊙G(z) =
1

2πi

∫

η

F (u)G(z/u)
du

u

where η is a positively oriented circle centered at 0 of radius r > 0 with |z|/RG < r <
RF , where RF and RG are the respective radii of convergence of F and G.

Hadamard Multiplication Theorem is derived from the convolution formula. The
singularities of F ⊙G are located at points γ = αβ where α and β are singularities of
F and G respectively. Also from the covolution formula we get that the singularities
γ are integrable.

1We use ⋆̄ instead of ⋆ that we reserve for the eñe product that we consider in [9].
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We can consider the case with trivial multiplicity 1, i.e. when there is only one
pair of singularities (α, β) that satisfies γ = αβ. The general case is a superposition
of this case. We can also assume α = β = γ = 1 to simplify the notation. We follow
the analytic continuation of F ⊙G by moving the point z and deforming the path of
integration homotopically into ηz so that the point z never crosses it.

ηz0

1

z0

ηz

1
z

η̂z0

1

z0

1

z0

1

z0

1

z0

a

Figure 2. Homotopical deformation of the integration path when z0 turns once around 1.

We consider the situation where z starts at z = z0 and turns positively N ≥ 1 times
around the point z = 1. Figure 2 shows the local homotopy deformation from the
integration path ηz0 to η̂z0 near 1 for N = 1. Figure 1 shows the resulting deformed
path for N = 2. Using the convolution formula we have

(ΣN
1 − Id)(F ⊙G)(z0) =

1

2πi

∫

η̂z0−ηz0

F (u)G(z/u)
du

u

Thus we are led to compute the last integral in the difference of the two paths that
is the multi-loop path shown in Figure 1. As illustrated in Figure 2, we can deform
into a train track composed by 4N segments copies of [z0, a] and [a, 1] where a ∈ C

is an arbitrary point in between z0 and 1.

The integral is independent of the collapsing point a and we can make a → 1,
leaving a train track composed by 2N segments copies of [z0, 1]. There are no polar
contributions at z = z0 or z = 1 since we assume that the singularities are integrable.

Considering the 2N paths, in the positive ordering given by the orientation of η̂z0 ,
and the corresponding signs given by the orientation, we have to integrate on [1, z0]
the maps

F1G0,−F1G1, F2G1,−F2G2, . . . , FNGN−1,−FNGN , FN−1GN ,−FN−1GN−1, . . . , F0G1,−F0G0
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for a total contribution of

F1(G0 −G1) + F2(G1 −G2) + . . .+ FN(GN−1 −GN ) + FN−1(GN −GN−1) + . . .+ F0(G1 −G0)

= −F1∆1G0 − F2∆1G1 + . . .− FN∆1GN−1 + FN−1∆1GN−1 + . . .+ F0∆1G1

= −∆1F0∆1G0 −∆1F1∆1G1 − . . .−∆1FN−1∆1GN−1

and finally

(ΣN
1 − Id)(F ⊙G)(z0) = − 1

2πi

∫ z0

1

N−1
∑

k=0

∆1Fk(u).∆1Gk(z/u)
du

u

which is the main formula for α = β = 1.⋄

3. Properties of monodromy operators and another derivation.

We develop some general properties of the monodromy operators that provide a
second derivation of the iterated monodromy formula from the case N = 1. This
section is only used for this purpose and can be skipped in a first reading. The for-
mulas developed here are useful for applications (for example we get a straightforward
computation of the monodromy of polylogarithms).

3.1. Properties of monodromy operators for integrable singularities.

Proposition 3.1 (Fundamental integro-monodromy formula). Let f be a holomor-
phic germ with an integrable isolated singularity at z = α. The local germ with an
isolated singularity at α

F (z) =

∫ z

α

f(u) du

is well defined. We have

∆αF (z) =

∫ z

α

∆αf(u) du

or

∆α

(
∫ z

α

f(u) du

)

=

∫ z

α

∆αf(u) du

In general, for z0 ∈ C which is path connected to α in a domain where f is holomor-
phic, we have

∆α

(
∫ z

z0

f(u) du

)

=

∫ z

α

∆αf(u) du

Proof. The general case for z0 ∈ C follows from the case z0 = α since
∫ z

z0

f(u) du =

∫ α

z0

f(u) du+

∫ z

α

f(u) du
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where the integral from z0 to α is taken on a path where f is holomorphic, and
∫ α

z0

f(u) du

is constant on z.

Now, we can integrate along the straight segment [α, z],

F (z) =

∫

[α,z]

f(u) du

then

F1(z) =

∫

[α,z]∪ηz

f(u) du

where η(z) is the circle centered at α passing through z with the positive orientation.
Then we have

∆αF (z) =

∫

η(z)

f(u) du .

Now, we can collapse homotopically η(z) into the segment [α, z], which gives a double
integral along this segment,

∆αF (z) =

∫ z

α

(f1(u)− f(u)) du =

∫ z

α

∆αf(u) du .

�

Example. We recall that the polylogarithms can be defined as Li1(z) = − log(1−z)
and

Lik+1(z) =

∫ z

0

Lik(u)
du

u
.

From the properties of the logarithmic function, we have

∆1 Li1(z) = −2πi

and by induction using the Proposition 3.1 we prove

∆1 Lik(z) = −2πi
(log z)k−1

(k − 1)!

The one line proof by induction is the computation

∆1 Lik+1(z) =

∫ z

1

−2πi

(k − 1)!

(log u)k−1

u
du = −2πi

k!

[

(log u)k
]z

1
= −2πi

k!
(log z)k

which gives the result.⋄

We extend Proposition 3.1.
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Proposition 3.2. Let u 7→ f(u, z) be a holomorphic germ with an integrable isolated
singularity at u = α, depending holomorphically on z in a neighborhood U of α with
(u, z) 7→ f(u, z) holomorphic for (u, z) in a neighborhood of

⋃

z∈U B̄(α, z) × {z} −
{(z, z)}. We assume that u 7→ f(u, z) is uniformly integrable at u = z (i.e. along
paths landing at u = z). The local germ with an isolated singularity at α

F (z) =

∫ z

α

f(u, z) du

is well defined. We have

∆αF (z) =

∫ z

α

∆[η(z)]f(u, z) du

where η(z) is the loop starting at z whose support is the circle centered at α passing
through z with the positive orientation.

Note that f(u, z) may have an integrable singularity at u = z, as it will be the
case in our main application of this formula. The proof follows from the same argu-
ment as for Proposition 3.1 since we can integrate along η(z), and then we collapse
homotopically η(z) onto the segment [α, z].

We recall the notation for the integral convolution

f ⋆̄ g = − 1

2πi

∫ z

γ

f(u/β) . g(βz/u)
du

u
.

Corollary 3.3. Consider f , resp. g, having an isolated singularity at α, resp. β,
and γ = αβ. We have

∆γ(f ⋆̄ g) = ∆αf ⋆̄ g + f ⋆̄∆βg +∆αf ⋆̄∆βg

Proof. We only need to compute the monodromy along η(z) and apply Proposition
3.2. Observe that when the variable u goes along η(z), then u/β winds once around
α, and βz/u winds once around β, hence

Σ[η(z)]f(u/β) . g(βz/u) = f1(u/β) . g1(βz/u)

thus

∆[η(z)]f(u/β) . g(βz/u) = ∆αf(u/β) . g(βz/u)+f(u/β) .∆βg(βz/u)+∆αf(u/β) .∆βg(βz/u)

and the result follows. �

Corollary 3.4. We have

∆γ

(

∆αF ⋆̄∆βG
)

= ∆αΣαF ⋆̄∆βΣβG−∆αF ⋆̄∆βG
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Proof. We write

∆αF ⋆̄∆βG = − 1

2πi

∫ z

γ

∆αF (u/β) .∆βG(βz/u)
du

u

and we use Proposition 3.2 applied to the function f(u, z) = ∆αF (u)∆βG(z/u), and
the singulatity at γ,

∆γ

(

∆αF ⋆̄∆βG
)

= ∆2
αF ⋆̄∆βG+∆αF ⋆̄∆2

βG+∆2
αF ⋆̄∆2

βG

= ∆αΣαF ⋆̄∆βΣβG−∆αF ⋆̄∆βG

recalling that Σ = Id+∆. �

3.2. Derivation from the case N = 1. We assume Theorem 1.1 for N = 1 and we
argue by induction. To simplify we assume that we don’t have higher multiplicity for
the singularity γ = αβ, i.e. that there is only one pair (α, β) such that γ = αβ. The
general case is obtained by linear superposition. We write

ΣN+1
γ (F ⊙G) = ΣN

γ (F ⊙G) + ∆γΣ
N
γ (F ⊙G)

= ΣN
γ (F ⊙G) + ∆γ(F ⊙G) +

N−1
∑

k=0

∆γ

(

∆αΣ
k
αF ⋆̄∆βΣ

k
βG
)

= ΣN
γ (F ⊙G) + ∆γ(F ⊙G) +

N−1
∑

k=0

(

∆αΣ
k+1
α F ⋆̄∆βΣ

k+1
β G−∆αΣ

k
αF ⋆̄∆βΣ

k
βG
)

= ΣN
γ (F ⊙G) + ∆γ(F ⊙G) +

(

∆αΣ
N
α F ⋆̄∆βΣ

N
β G−∆αF ⋆̄∆βG

)

= ΣN
γ (F ⊙G) + ∆αΣ

N
α F ⋆̄∆βΣ

N
β G

where we use the induction hypothesis on the second line, we use Corollary 3.4 in
the third line, we telescope the sum on the fourth line, and we use ∆γ(F ⊙ G) =
∆αF ⋆̄∆βG (which is the result for N = 1) in the last line. Now, the result follows
by using the induction hypothesis in the last equation.⋄

Obviously, if we knew the morphism property for ∆γΣ
N
γ we could shorten the

proof using this in the first line. The morphism property is equivalent to the iterated
monodromy formula.

4. Applications.

4.1. Local monodromies of Hadamard products of algebraic functions. We
consider holomorphic germs H that are the Hadamard product of a finite number of
algebraic functions. The Hadamard grade, defined by Allouche and Mendès-France
in [1], is the minimum integer n ≥ 1 such that

H = F1 ⊙ . . .⊙ Fn



LOCAL MONODROMY FORMULA OF HADAMARD PRODUCTS 9

where F1, . . . , Fn are algebraic functions. The grade is infinite if there is no such
decomposition. The Hadamard grade is natural when we study the problem of gener-
ating the tower of special functions by Hadamard products à la Liouvile. We observe
that for an algebraic function F , for any ramification singularity α, we have that
Σk

αF , for k ∈ Z, are the conjugates of F , and (Σk
αF )k is d-periodic where d is the

degree of F (the local minimal period divides d).

We consider in the rest of this section algebraic functions F1, . . . Fn which have
all the singularities integrable. The main iterated monodromy formula puts a heavy
restriction on the local monodromies of the singularities of the function H = F1 ⊙
. . .⊙ Fn.

Theorem 4.1. Let H = F1 ⊙ . . . ⊙ Fn where, for 1 ≤ j ≤ n, the Fj are algebraic
functions of degree dj ≥ 2 with integrable ramification points, then, if d = d1 . . . dn,
we have for N ≥ 1,

(ΣN+2d
γ − 2ΣN+d

γ + ΣN
γ

)

H = 0

Proof. We start from formula (2)

(ΣN
γ − Id)(F1 ⊙ F2 ⊙ . . .⊙ Fn) =

N−1
∑

k=0

∑

α1...αn=γ

∆α1
Σk

α1
F1 ⋆̄ . . . ⋆̄ ∆α1

Σk
αn

Fn

which shows that if N = kd+ r the Euclidean division by d, 0 ≤ r < d, we have

(ΣN
γ − Id)H =

(

k
(

Σd
γ − Id

)

+
(

Σr
γ − Id

) )

H

Therefore, we get
(

ΣN+d
γ − ΣN

γ

)

H =
(

Σd
γ − Id)H and

(ΣN+2d
γ − 2ΣN+d

γ + ΣN
γ

)

H = 0

�

As Corollary from the proof we get,

Corollary 4.2. We have the existence of the following limit

lim
N→+∞

1

N
(ΣN

γ −Id)(F1⊙ . . .⊙Fn) =
1

d1 . . . dn

d−1
∑

k=0

∑

α1...αn=γ

∆α1
Σk

α1
F1 ⋆̄ . . . ⋆̄ ∆αn

Σk
αn

Fn

This is interesting once we recognize 1
N
(ΣN

γ −Id) as a Birkhoff sum for ∆γ associated
to the local monodromy dynamics of Σγ

1

N

(

ΣN
γ − Id

)

=
1

N

N−1
∑

k=0

(Σk+1
γ − Σk

γ) =
1

N

N−1
∑

k=0

∆γ ◦ Σk
γ

We can be more precise and prove a recurrence result of the local monodromy. The
proof is done by induction.
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Theorem 4.3 (Recurrence of the local monodromy). For 1 ≤ j ≤ n, let Fj be
algebraic functions of degree dj ≥ 2 with integrable ramification points. Let Dj =
dn−j+1 . . . dn and consider the successive euclidean divisions starting with N ≥ 1,

N = KnDn +Rn 0 ≤ Rn < Dn

Rn = Kn−1Dn−1 +Rn−1 0 ≤ Rn−1 < Dn−2

...
...

R2 = K1D1 +R1 0 ≤ R1 < D1

R1 = K0

so, the Ki for i < n are uniformly bounded on N , 0 ≤ Ki < Di+1, and we have the
(Dn)-adic decomposition

N = KnDn +Kn−1Dn−1 + . . .K1D1 +K0 .

Then we have

(ΣN
γ − Id)(F1 ⊙ . . .⊙ Fn) = Kn

∑

α1...αn=γ

Dn−1
∑

k=0

∆α1
Σk

α1
F1 ⋆̄ . . . ⋆̄ ∆αn

Σk
αn

Fn + . . .

+Kn−1

∑

α1...αn=γ

d1−1
∑

l1=0

∆α1
Σl1

α1
F1 ⋆̄

Dn−1−1
∑

k=0

∆α2
Σk

α2
F2 ⋆̄ . . . ⋆̄ ∆αn

Σk
αn

Fn + . . .

+Kn−2

∑

α1...αn=γ

∑

0≤l1<d1
0≤l2<d2

∆α1
Σl1

α1
F1 ⋆̄ ∆α2

Σl2
α2
F2 ⋆̄

Dn−2−1
∑

k=0

∆α3
Σk

α3
F3 ⋆̄ . . . ⋆̄ ∆αn

Σk
αn

Fn + . . .

...

+K1

∑

α1...αn=γ

∑

0≤l1<d1
...

0≤ln<dn

∆α1
Σl1

α1
F1 ⋆̄ . . . ⋆̄ ∆αn

Σln
αn

Fn + . . .

+
∑

α1...αn=γ

K0
∑

k=0

∆α1
Σk

α1
F1 ⋆̄ . . . ⋆̄ ∆αn

Σk
αn

Fn

4.2. Class of recurrent monodromy. We generalize the previous result to func-
tions with recurrent monodromy.

Definition 4.4. An isolated singularity α of a germ F has a recurrent monodromy
of order d ≥ 1 if the iterated monodromy Σd

α is a linear combination of monodromies
(Σk

α)0≤k≤d−1, that is, there are constants ak ∈ C, 0 ≤ k ≤ d − 1, such that, for all
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m ≥ 0,

Σm+d
α F =

d−1
∑

k=0

ak Σ
m+k
α F .

The recurrent monodromy class is the set of functions with only isolated singularities
with recurrent monodromies at all singularities.

A first example are algebraic function which are recurrent of the order equal to
their degree and a0 = 1 and aj = 0 for j = 1, . . . , d. From the result of the previous
section, the Hadamard product of algebraic functions with integrable singularities is
in the recurrent monodromy class (but it is not necessarily algebraic, see section 4.3).
Observe that in the definition the order of the recurrence depends on the singularity.

Theorem 4.5 (Invariance of the recurrent monodromy class). Let F,G be functions
in the recurrent monodromy class with integrable singularities. Then their Hadamard
product F ⊙G is also in the recurrent monodromy class with integrable singularities.

Proof. Let m(γ) ≥ 1 be the multiplicity of γ, i.e. the number of (α, β) such that
γ = αβ. Let d = dαdβm(γ) where dα and dβ are the degree of the recurrence for the
monodromies of F and G at points α and β respectively such that γ = αβ.

From the main formula we have for k ≥ 0,

Σm
γ F ⊙G = F ⊙G+

m−1
∑

k=0

∑

αβ=γ

∆αΣ
k
αF ⋆̄ ∆βΣ

k
βG

and plugging the recurrence relation by induction we lower the exponents and end-up
with

Σm
γ F ⊙G = F ⊙G+

∑

(k,l)

∑

αβ=γ

cm,k,l(α, β)∆αΣ
k
αF ⋆̄ ∆βΣ

l
βG

where 0 ≤ k ≤ dα, 0 ≤ l ≤ dβ and constant cm,k,l(α, β) ∈ C.

If we consider d+1 of these relations, form = 0, . . . , d, then by linear elimination we
find a linear combination that kills all the ∆αΣ

k
αF ⋆̄ ∆βΣ

l
βG, and we can express Σd

γH
linearly in function of the lower iterated monodromies Σm

γ H , for m = 0, . . . , d−1. �

Observe that if the singularities α and β of F and G have respective orders dα and
dβ, then if the singularity γ = αβ of F ⊙G has no multiplicity, then the monodromy
at γ is dαdβ-recurrent. For m(γ) ≥ 2 we can improve the above proof observing that
parts of the sum associated to different pairs (α, β) do not interact. Then this gives
that the monodromy at γ is D-recurrent for

D = lcm{dαdb; (α, β), αβ = γ}
This shows a graduated structure of the Hadamard algebra of functions with recurrent
monodromies.
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An interesting subclass of the recurrent monodromy class are those functions whose
monodromy is K-recurrent for a subfield K ⊂ C, for example when K = Q or K is
a number field.

Definition 4.6 (K-recurrent monodromy class). Let K ⊂ C be a subfield of C. A
recurrent monodromy function has a K-recurrent monodromy if we have a recurrence

Σm+d
α F =

d−1
∑

k=0

ak Σ
m+k
α F .

with coefficients in ak ∈ K for all 0 ≤ k ≤ d− 1.

Corollary 4.7. Let K ⊂ C be a subfield of C. The K-recurrent monodromy class
with integrable singularities is invariant by Hadamard product.

Proof. In the proof of Theorem 4.5 we have all coefficients cm,k(α1, . . . , αn) ∈ K and
the linear combination can be done with scalars in K, hence the result. �

We can refine the previous results allowing the field K to depend on the singularity,
say Kα. Then, for the Hadamard product F ⊙ G, the associated field Kγ for the
singularity is an extension of the fields (Kα) and (Kβ) such that αβ = γ.

Examples.

We have some remarkable examples. In all these examples K is a subfield of C.

Example 1. Finite dimensional récurrence. We consider the class of functions
F having integrable singularities at places α ∈ C, such that for each singularity α
there is a finite K-dimensional space Vα of dimension dα ≥ 1, and for F ∈ F and
all k = 0, 1, . . . d − 1, Σk

αF ∈ Vα. Then F is a class of functions with K-recurrent
monodromy so they Hadamard products are in the K-recurrent monodromy class.

Given a linear differential equation with rational function coefficients, the set of
local solutions at a regular point (out of poles) is a finite dimensional vector space. If
we have a bases of solutions that are integrable (which is more precise than fuchsian)
then all solutions are integrable. Moreover, since the monodromy operator Σα com-
mutes with differential operators with rational function coefficients (if the coefficients
don’t have monodromies at the poles or singularities this also works), then we get
that all solutions have recurrent monodromies. Hence their Hadamard products do
have recurrent monodromies also.

Example 2. Algebro-geometric singularities.

We consider the class of functions F having only algebro-geometric singularities, as
those considered in [7]. This means that F has only isolated singularities and locally



LOCAL MONODROMY FORMULA OF HADAMARD PRODUCTS 13

near a singularity α we have

F (z) = (z − α)−aα

(

log(z − α)

2πi

)nα

ϕα(z)

where aα ∈ C, nα ≥ 0 is a positive integer, and ϕ ∈ Oα a local holomorphic germ.
All these parameters depend on the singularity α, but we may drop the sub-index α
to simplify the notation.

These are the type of singularities appearing in solutions of fuchsian equations.
Morevoer, we request that ℜaα > −1 so that the singularities are integrable.

Observe that we have for k ∈ Z,

Σk
αF = Σk

α(z − α)−aΣk
α

(

log(z − α)

2πi

)n

Σk
αϕ(z)

= e−2πika(z − α)−a

(

log(z − α)

2πi
+ k

)n

ϕ(z)

So, the monodromies are in the finite dimensional space generated by the germs,

El(z) = (z − α)−a

(

log(z − α)

2πi

)l

ϕ(z)

for 0 ≤ l ≤ n. Using the argument from Example 1 we conclude that we have a
recurrent monodromy. We can be more precise. For a finite linear combination we
have

∑

k

ck Σ
k
αF = (z − α)−aϕ(z)

(

∑

k

ck e
−2πika

(

log(z − α)

2πi
+ k

)n
)

=
n
∑

l=0

(

n

l

)

(

∑

k

ck e
−2πikakl

)

(

log(z − α)

2πi

)l

Since the (n+ 1)× (n+ 1) Vandermonde determinant (with convention 00 = 1 here)

det[kl] =
∏

k1 6=k2

(k1 − k2) 6= 0

is non-zero, for N = n we can find a non-trivial linear combination (δl,n is Kronecker
symbol)

∑

k

dkk
l = δl,n

and putting ck = dke
2πika we prove that the monodromy is recurrent of degree n.

Observe that the monodromy is K-recurrent if and only if e−2πia ∈ K. Thus, if K is
a number field then we must have α ∈ Q.
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Example 3. Polylogarithm singularities.

This is a generalization of the previous example. It gives examples with recurrent
monodromy that are not fuchsian.

We assume that for each singularity α we have locally near α that F is a germ of
the form

F (z) = (z − α)aL(z)ϕ(z)

where L(z) ∈ C[li1(z − α), . . . , lin(z − α)] where the lik are the normalized poly-
logarithms

lik(z) = −Lik(z)

2πi
hence

∆1 lik(z) =
(log z)k−1

(k − 1)!

and

(4) Σα lik(z − α) = lik(z − α) +
(log z)k−1

(k − 1)!

Since L is a polynomial on polylogarithm functions, say L = P (li1, . . . , lin), we denote
by d the degree of P , and we call d the polylogarithm degree of L.

Lemma 4.8. We have

Σk
αF = e2πika(z − α)aP

(

li1+k, . . . , lin +k
(log z)n−1

(n− 1)!

)

ϕ(z)

and

P

(

li1+k, . . . , lin +k
(log z)n−1

(n− 1)!

)

= Q(log z, li1, . . . , lin) ∈ C[log z, li1(z−α), . . . , lin(z−α)]

and the degree of the polynomial Q is bounded by (n − 1)d in the first logarithmic
variable, and is the same as the one of P in the other variables.

Proof. It is straightforward from the monodromy formula (4) for polylogarithms. �

Corollary 4.9. With the previous notations, a function F with polylogarithm singu-
larities is in the recurrent monodromy class. If P ∈ K[X1, . . . , Xn] has coefficients in
the field K, then the monodromy of F at the singularity α is K-recurrent.

4.3. Elliptic integrals, hypergeometric functions and fractional integration.

In this section we sketch one of the applications of the monodromy formula to elliptic
integrals and to hypergeometric functions. We refer to [6] for the classical theory of
elliptic integrals, and to [10] and [2] for the theory of hypergeometric functions.
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As is well know, the Hadamard product of algebraic functions is not in general an
algebraic function. A notable exception happens in finite characteristic by a Theorem
of Deligne [3]. One simple example from [7] is

F (z) = G(z) = (1− z)−1/2 =

+∞
∑

n=0

1.3 . . . (2n− 1)

2.4 . . . (2n)
zn

which give by Hadamard product the elliptic integral

F ⊙G(z) =

+∞
∑

n=0

(

1.3 . . . (2n− 1)

2.4 . . . (2n)

)2

zn =
2

π

∫ 1

0

du
√

(1− u2)(1− zu2)

which is proved by developing the right hand side and observing that
∫ 1

0

u2n

√
1− u2

du =

∫ π/2

0

(cosx)2n dx =
1.3 . . . (2n− 1)

2.4 . . . (2n)

π

2
.

This Hadamard product is the classical modular function in the variable k = z2 which
is not an algebraic function (since it is easy to check that the local monodromies are
not of finite order),

K(k) = F ⊙G(k2) =
2

π

∫ 1

0

du
√

(1− u2)(1− k2u2)

We can directly compute the monodromy of the modular function by application of
the monodromy formula. Both F and G have an integrable singularity at z = 1, and
we get the closed form expression

∆1(F ⊙G)(z) = − 1

2πi

∫ z

1

du
√

u(1− u)(u− z)

For the modular function, using the change of variable formula (Proposition 3.11 from
[9]), we have

∆±1K(k) = ∆1(F ⊙G)(k2) = − 1

2πi

∫ k2

1

du
√

u(1− u)(u− k2)

More generally, we can generate some classical and generalized hypergeometric
functions from Hadamard products of simple polar functions, for example, we have

(5) (1− z)−a ⊙ (1− z)−b = F (a, b, 1; z)

and this generalizes the previous example (where a = b = 1/2 and α = β = 1). Then
the classical Euler integral formula

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

ub−1(1− u)c−b−1(1− zu)−a du
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can be interpreted as a monodromy integral formula. In fact, for c = 1 the formula
can be derived from equation (5) observing that

∆1(1− z)−a =
(

e−2πia − 1
)

(1− z)−a

and from the knowledge of the monodromy of z 7→ F (a, b, c; z) (see [4] formula 15.2.3
or Theorem 2.3.3 in [2])

∆1F (a, b, c; z) =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(z − 1)c−a−bF (c− a, c− ab, c− a− b+ 1; 1− z)

that can be obtained directly from the hypergeometric differential equation and the
Kummer solutions (as in Theorem 2.3.3 in [2]).

The same analysis can be carried out for higher integral formulas of the classical
hypergeometric functions as for example

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

ub−1(1− u)c−b−1F (a, b, c; zu) du

or for generalized hypergeometric functions

pFq





a1, . . . , ap
; z

b1, . . . , bq



 =
Γ(b1)

Γ(a1)Γ(b1 − a1)

∫ 1

0

ua1−1(1−u)b1−a1−1
p−1Fq−1





a2, . . . , ap
; zu

b2, . . . , qp



 du

With this systematic procedure, although computational laborious, we can derive
an important number of integral formulas in the theory of hypergeometric functions
that appear as particular cases of our monodromy formula. Also this shows a link of
the convolution operation in the monodromy formula with the convolutions appearing
in Katz’s theory of rigid local systems (see in particular the introduction of [8]2).

More generally, when we consider a finite dimensional vector space of fuchsian func-
tions, as those arising as solutions of a fuchsian equation, the local monodromies are
linear operators, and the monodromy integral formulas provide a multitude of integral
relations between these functions. Thus we can see that the integral relations in the
theory of generalized hypergeometric functions goes far beyond the hypergeometric
class of functions. To develop properly a full theory it is convenient to enlarge the
Hadamard product to functions with integrable singularities at 0.

One remarkable method of derivation of these integral formulas is trough fractional
calculus and fractional integration by parts, as iniciated by Erdélyi in [5] (see also
[2] section 2.9). One explanation for the success of this approach is that iterated
and fractional integration is another incarnation of the monodromy formula. More

2I am indebted to J. Fresan for pointing out this reference.
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precisely, we can compute the iterated integral, for an integer n ≥ 1,

In(f)(z) =

∫ z

α

∫ u1

α

. . .

∫ un

α

f(un) dun . . . du1

=
1

(n− 1)!

∫ z

α

(z − u)n−1f(u) du

thus the fractional integral is naturally defined for ℜα > 0 as

Iα(f)(z) =
1

Γ(α)

∫ z

α

(z − u)α−1f(u) du

and we can write this formula as

Iα(f)(z) =
−2πi

Γ(α)

(

− 1

2πi

∫ z

α

uαf(u)
(z

u
− 1
)α−1 du

u

)

Therefore we have (abusing the theory)

Iα(f)(z) = − 2πi

Γ(α)
∆α

(

F ⊙ (z − 1)α−1
)

where

F (z) =
1

2πi
log(z − α)zαf(z)

so that (we are asuming f regular at α)

∆αF (z) = zαf(z)

Again, in order to make sense of this formula for ℜα > 1, we need to extend the
Hadamard product theory to functions with singularities at 0. Part of such theory
can be found in some early articles of S. Mandelbrojt. For example, for ramified
germs which are series of the form

F (z) =
∑

α

aαz
α

with the proper convergence conditions, the Plancherel-Hadamard convolution for-
mula makes sense integrating along an infinite circle centered at 0 and our derivation
of the monodromy formula carries out with the same arguments. These developments
are left for future work.

In conclusion, we would like to remove the local “integrability assumption” in the
results. For this we need to find monodromy formulas for the general class of isolated
singularities with monodromy. The nature of the formulas is geometric and this is
left for the next article on monodromies.
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[7] JUNGEN, R.; Sur les séries de Taylor n’ayant que des singularités algébrico-logarithmiques sur
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[9] PÉREZ-MARCO, R.; Monodromies of singularities of the Hadamard and eñe product,
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