Parameterized Complexity of Independent Set in H-free Graphs - Archive ouverte HAL
Article Dans Une Revue Algorithmica Année : 2020

Parameterized Complexity of Independent Set in H-free Graphs

Résumé

In this paper, we investigate the complexity of MAXIMUM INDEPENDENT SET (MIS) in the class of H-free graphs, that is, graphs excluding a fixed graph as an induced subgraph. Given that the problem remains NP-hard for most graphs H, we study its fixed-parameter tractability and make progress towards a dichotomy between FPT and W[1]-hard cases. We first show that MIS remains W[1]-hard in graphs forbidding simultaneously K1,4, any finite set of cycles of length at least 4, and any finite set of trees with at least two branching vertices. In particular, this answers an open question of Dabrowski et al. concerning C4-free graphs. Then we extend the polynomial algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm when H is a disjoint union of cliques. We also provide a framework for solving several other cases, which is a generalization of the concept of iterative expansion accompanied by the extraction of a particular structure using Ramsey’s theorem. Iterative expansion is a maximization version of the so-called iterative compression. We believe that our framework can be of independent interest for solving other similar graph problems. Finally, we present positive and negative results on the existence of polynomial (Turing) kernels for several graphs H.
Fichier principal
Vignette du fichier
main.pdf (953.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03015353 , version 1 (10-09-2020)
hal-03015353 , version 2 (19-11-2020)

Identifiants

Citer

Edouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, Rémi Watrigant. Parameterized Complexity of Independent Set in H-free Graphs. Algorithmica, 2020, Parameterized and Exact Computation, IPEC 2018, 82 (8), pp.2360-2394. ⟨10.1007/s00453-020-00730-6⟩. ⟨hal-03015353v2⟩
157 Consultations
137 Téléchargements

Altmetric

Partager

More