Verbal Multiword Expression Identification: Do We Need a Sledgehammer to Crack a Nut? - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Verbal Multiword Expression Identification: Do We Need a Sledgehammer to Crack a Nut?

Jean-Yves Antoine

Résumé

Automatic identification of multiword expressions (MWEs), like to cut corners 'to do an incomplete job ', is a prerequisite for semantically-oriented downstream applications. This task is challenging because MWEs, especially verbal ones (VMWEs), exhibit surface variability. This paper deals with a subproblem of VMWE identification: the identification of occurrences of previously seen VMWEs. A simple language-independent system based on a combination of filters competes with the best systems from a recent shared task: it obtains the best averaged F-score over 11 languages (0.6653) and even the best score for both seen and unseen VMWEs due to the high proportion of seen VMWEs in texts. This highlights the fact that focusing on the identification of seen VMWEs could be a strategy to improve VMWE identification in general.
Fichier principal
Vignette du fichier
paper.pdf (845.41 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03013636 , version 1 (19-11-2020)

Identifiants

  • HAL Id : hal-03013636 , version 1

Citer

Caroline Pasquer, Agata Savary, Carlos Ramisch, Jean-Yves Antoine. Verbal Multiword Expression Identification: Do We Need a Sledgehammer to Crack a Nut?. The 28th International Conference on Computational Linguistics (COLING-20), Dec 2020, Barcelona, Spain. ⟨hal-03013636⟩
195 Consultations
211 Téléchargements

Partager

More