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Abstract

Automatic identification of multiword expressions (MWEs), like to cut corners ‘to do an in-
complete job ’, is a pre-requisite for semantically-oriented downstream applications. This task is
challenging because MWEs, especially verbal ones (VMWEs), exhibit surface variability. This
paper deals with a subproblem of VMWE identification: the identification of occurrences of
previously seen VMWEs. A simple language-independent system based on a combination of
filters competes with the best systems from a recent shared task: it obtains the best averaged
F-score over 11 languages (0.6653) and even the best score for both seen and unseen VMWEs
due to the high proportion of seen VMWEs in texts. This highlights the fact that focusing on the
identification of seen VMWEs could be a strategy to improve VMWE identification in general.

1 Introduction

Multiword expressions (MWEs) are word combinations idiosyncratic with respect to e.g. syntax or
semantics (Baldwin and Kim, 2010). One of their most emblematic properties is semantic non-
compositionality: the meaning of the whole cannot be straightforwardly deduced from the meanings
of its components, as in cut corners ‘do an incomplete job ’.1 Due to this property and to their frequency
(Jackendoff, 1997), MWEs are a major challenge for semantically-oriented downstream applications,
such as machine translation. A prerequisite for an MWE processing is their automatic identification.

MWE identification aims at locating MWE occurrences in running text. This task is very challenging,
as signaled by Constant et al. (2017), and further confirmed by the PARSEME shared task on automatic
identification of verbal MWEs (Ramisch et al., 2018). One of the main difficulties stems from the
variability of MWEs, especially verbal ones (VMWEs). That is, even if a VMWE has previously been
observed in a training corpus or in a lexicon, it can re-appear in morphosyntactically diverse forms.
Examples (1–2) show two occurrences of a VMWE with variation in the components’ inflection (cutting
vs. cut), word order, presence of discontinuities (were), and syntactic relations (obj vs. nsubj).

(1) Some companies were cutting cornersobj to save costs.
(2) The field would look uneven if cornersnsubj were cut.

However, unrestricted variability is not a reasonable assumption either, since it may lead to literal or
coincidental occurrences of VMWEs’ components (Savary et al., 2019b), as in (3) and (4), respectively.2

(3) Start with
::::::
cutting one

::::::
corner of the disinfectant bag.

(4) If you
:::
cut along these lines, you’ll get two acute

:::::::
corners.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Henceforth, the lexicalized components of a MWE, i.e. those always realized by the same lexemes, appear in bold.
2Henceforth, literal and coincidental occurrences are highlighted with wavy underlining, following Savary et al. (2019b).
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train dev test
# tokens # VMWEs # tokens # VMWEs # seen % seen # tokens # VMWEs # seen % seen

FR 432389 4550 56254 629 485 77.1 39489 498 251 50.4
PL 220465 4122 26030 515 387 75.1 27823 515 371 72.0
PT 506773 4430 68581 553 409 74.0 62648 553 397 71.8
RO 781968 4713 118658 589 555 94.2 114997 589 561 92.2

Table 1: PARSEME shared task corpora for the 4 languages in focus (FR, PL, PT, RO) in terms of the number of tokens,
annotated VMWEs and seen VMWEs (those whose multiset of lemmas also appear annotated in train).

Our paper addresses VMWE variability, so as to distinguish examples (1-2) from (3-4). We focus on a
subproblem of VMWE identification: the identification of previously seen VMWEs. Section 2 describes
the corpora and best systems of the PARSEME shared task 1.1, Sections 3 and 4 motivate and describe
our system Seen2020 dedicated to the task of seen VMWE identification. Experimental results are
shown in Section 5, an interpretation is proposed in Section 6 and we conclude in Section 7.

2 PARSEME Shared Task 2018

VMWE identification recently received attention, especially in the PARSEME community, with the de-
velopment and release of multilingual annotation guidelines and annotated corpora.3 These data underlie
three editions of the PARSEME shared task, dedicated to VMWE identification. This section discusses
the second edition (1.1); the third edition (1.2) was ongoing at the time of writing.

Corpora The PARSEME corpora contain surface forms, lemmas, parts of speech (POS), morpholog-
ical features, syntactic dependencies and VMWE annotations.4 VMWEs are categorized into verbal
idioms (VID: cut corners), light-verb constructions (LVC.full: to take a walk ), inherently reflexive
verbs (IRV: s’apercevoir ‘to perceive oneself ’⇒‘to realize’ in French), etc. The categories cover var-
ious syntactic patterns, not only VERB-NOUN pairs as in some related work (Fazly et al., 2009). The
corpora contain mostly newspaper texts, but differences in category distributions are due to domain,
size, topic, and language structures (Savary et al., 2018). Corpora are split into training sets (train),
development sets (dev, unavailable for some languages) and test sets.

Among the 19 languages of the PARSEME shared task 1.1, we focus on 10 which: (i) benefit from a
dev corpus, (ii) do not suffer from lacking lemmas and (iii) are also covered in edition 1.2:5 Bulgarian
(BG), Basque (EU), French (FR), Polish (PL), Brazilian Portuguese (PT), Romanian (RO), German
(DE), Greek (EL), Hebrew (HE) and Italian (IT). MWE components are not always separated by spaces
or hyphens. Such single-token VMWEs are particularly frequent in Hungarian (HU), corresponding to
74% of the VMWEs (határozathozatal ‘take decision’). In order to study this phenomenon, Hungarian
was added to the selected languages. Our experiments use the corpora from edition 1.1, so as to compare
our results with state-of-the-art systems (results of edition 1.2 were not available at the time of writing).

Task Edition 1.1 of the PARSEME shared task aimed at boosting the development of VMWE identi-
fiers (Ramisch et al., 2018). Depending on the use of external resources, systems participated in the open
or closed tracks. In the closed track, systems could only use the annotated corpora described above.

The task has three phases. In the training phase, participants are given, for all languages, train and
dev corpora annotated for VMWEs. In the prediction phase, participants are given test corpora in
blind mode, that is, with all annotations except VMWEs, which must then be predicted. In the evaluation
phase, predictions are compared to the manually annotated reference in test. Morphosyntactic annota-
tions (e.g. lemmas, POS) in test are available to participants in the prediction phase, but their quality
varies across languages, since for some languages they are generated automatically.

In this framework, the subtask of seen VMWE identificaiton focuses on seen VMWEs. A VMWE in
dev or test is considered seen if a VMWE with the same multiset of lemmas is annotated at least once
in train. Multisets are preferred over simple sets to represent repeated lemmas, e.g. hand in hand

3
https://gitlab.com/parseme/corpora/-/wikis

4VMWE annotation is manual, morphosyntax may be automatic: http://hdl.handle.net/11372/LRT-2842
5
http://multiword.sourceforge.net/sharedtask2020/
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(Ramisch et al., 2018).6 Table 1 shows statistics for corpora of 4 languages on which we focus. Seen
VMWEs represent 74% to 94% of VMWEs in dev and 50% to 92% in test. Due to this prevalence,
improvements in seen VMWE identification can benefit VMWE identification in general.

Best Systems We compare our system to four PARSEME shared task 1.1 systems selected for their
high performances (for at least one language) and a variety of architectures. The systems belonging
to the closed track are TRAV ERSAL (Waszczuk, 2018), TRAPACCS (Stodden et al., 2018) and
V arIDE (Pasquer et al., 2018a), whereas SHOMA (Taslimipoor and Rohanian, 2018) competed in
the open track because it uses pre-trained word embeddings. TRAV ERSAL searches the optimal
labeling of syntactic trees via multiclass logistic regression. In V arIDE, a naive Bayes classifier uses
morphosyntactic information to predict if extracted candidates could be idiomatic. TRAPACCS and
SHOMA rely on a neural architecture: convolutional layers and SVM for the former, convolutional and
recurrent layers with an optional CRF layer for the latter. Rohanian et al. (2019) propose an improvement
of SHOMA, hereafter SHOMA 2019, conceived to better handle discontinuities. This optimised
version relies on two neural architectures (graph convolutional network and multi-head self-attention)
combined or applied separately, and focuses on 4 languages: DE, EN, FA and FR.

3 MWEs’ Nature as a Guiding Principle

MWE identification is a hard task, as exemplified by the PARSEME shared task results, in which the
best systems, (Sec. 2) achieve global cross-language macro-averaged F1 scores below 0.6. Savary et
al. (2019a) argue that this is mainly due to the very nature of MWEs. Namely, MWEs of the general
language (as opposed to specialized phenomena such as named entities and multiword terms) are mostly
regular at the level of tokens (individual occurrences), but idiosyncratic at the level of types (sets of oc-
currences).7 For instance, the MWEs in (1)–(2) are perfectly regular English constructions, containing
no special capitalization or trigger words, but their comparison to (3)–(4) reveals the prohibited number
inflection of the noun corners. Additionally to this type-level idiosyncrasy, general-language MWEs are
often dissimilar among each other but similar to regular (non-MWE) constructions. For instance, cut
corners is a MWE but trim corners and cut edges are not, i.e., the semantic similarity (often modelled
by word embeddings) between cut and trim or corners and edges provides few hints for correctly dis-
tinguishing a MWE from non-MWEs. This implies strong lexicalization, that is, it is the combination of
precise lexemes (and not so much of their senses) which makes a MWE. Savary et al. (2019a) claim that,
due to these properties, the generalization power of mainstream machine learning is relatively weak for
MWE identification. This fact is confirmed by the results in the present paper, in which we outperform
learning-based state-of-the-art systems using simple and interpretable rules and filters.

Savary et al. (2019a) show the critical difficulty of unseen data in MWE identification, whatever the
system’s architecture. They also argue that there is room for improvement on seen MWEs occurring with
morphosyntactic variation. This fact, together with the dominance of seen data mentioned in Table 1,
implies that much improvement can be achieved in MWE identification by focusing on seen MWEs.
Another important finding for our proposal is that literal readings of MWEs, as in (3), occur surpris-
ingly rarely in texts across languages from different genera. Savary et al. (2019b) show that, whenever
an MWE’s lexicalized components co-occur fulfilling the morphosyntactic conditions for an idiomatic
reading, this reading almost always occurs. These findings inspired our method. We believe that com-
petitive results should be achievable for seen MWE identification based on the following hypotheses:

H1 We should search co-occurrences of precise lexemes (and POS) annotated as VMWEs in train.

H2 We should allow only for those morphosyntactic variants which were previously seen in train.

H3 We should not heavily rely on automatic POS tagging and syntactic parsing, which may be noisy.

H4 We should consider syntactic coherence to eliminate coincidental occurrences as in (4).
6This definition was updated in edition 1.2, so that a VMWE from test is considered seen if it occurs in train or dev

(vs. only in train for edition 1.1). Since we compare our results with those of edition 1.1, we use the train-only definition.
7The notions of MWE tokens and types are detailed in the framework proposed by Savary et al. (2019a), Sec. 2.



These hypotheses point towards simple extraction and filtering techniques. We put forward a method
based on 8 fully interpretable filters directly inspired by the nature of MWEs discussed above. It only
has 8 binary parameters, which indicate if, for a given language, a given filter should be activated or not.
Its results are fully interpretable since it is straightforward to point at the filters which keep/eliminate a
given true/false positive/negative candidate. Despite this simplicity and interpretability, our method out-
performs the state-of-the-art systems based on complex architectures, including advanced machine/deep
learning techniques, and requiring up to millions of parameters. We also expect the method to gener-
alize over many languages since the properties it exploits proved generic by the state-of-the-art studies.
Details of this method and an illustration of the whole set of filters are exposed in the next section.

Extraction and filtering techniques have been employed in the past (Constant et al., 2017, Sec. 3.2.1).
Dictionary lookup was performed using lemmas, POS and distance filters prior to machine translation
(Carpuat and Diab, 2010; Ramisch et al., 2013). In bilingual MWE lexicon discovery, filters can be
applied before (Bouamor et al., 2012) or after extraction (Caseli et al., 2010; Semmar, 2018). Filters can
be implemented using finite-state machines (Silberztein, 1997; Savary, 2009) and parameterized using
classifiers (Pasquer et al., 2018b; Pasquer et al., 2020a). Our originality lies in (a) proposing a highly
interpretable method based on on/off filters, (b) evaluating it on several categories of seen VMWEs in 11
languages, and (c) outperforming less interpretable state-of-the-art machine learning models.

4 Filter-Based Seen2020 System

Our system, called Seen2020, operates in the closed track and focuses on the seen VMWE identification
task with a two-step approach: candidate (i.e. potential VMWE) extraction, followed by candidate filter-
ing. This method will be illustrated with examples in French. First, the extraction phase provides VMWE
candidates in dev (while training) or test (while testing) based on the previously seen lemma multi-
sets (so as to follow hypothesis H1 from Sec. 3). Multisets allow extracting candidates in any order (as
opposed to tuples) while keeping track of repeated lemmas (as opposed to sets). Assume that a French
corpus contains train sentences (5-9) and test sentences (10-19).8 Focusing on (FR) faireVERB
laDET lumièreNOUN ‘to make the light’⇒‘to shed light’ seen once in train (5), the (non-exhaustive)
list of candidates in Tab. 2 would be extracted, as they contain the three lemmas faire, la and lumière.

The extraction guarantees high recall at the expense of precision, e.g. R = 1 but P = 0.013 in Italian.
Thus, more than half candidates in Tab. 2 are no VMWEs but coincidental (11–12;15-a,b,c) or literal
(19) occurrences. Many spurious candidates may be found in the same sentence (15) because of frequent
determiners like la ‘the’.9 The extraction recall is not perfect either: Ex. (10) is not extracted since the
determiner la disappears in the negative form. Errors in automatic lemmatization also affect recall.
(5) LaDET lumièreNOUN.sing seraAUX faiteVERB sur ce drame. ‘The light will be done on this drama’⇒‘Light will be shed on

this drama.’ (VID)
(6) LaDET porteNOUN aAUX résolumentADV étéAUX ferméeVERB aux initiatives. ‘The door was firmly closed on initiatives.’

(VID)
(7) Il fermeVERB laDET porteNOUN.sing à une loi. ‘He closes the door on a law.’ (VID)
(8) Dorothée [...] pritVERB laDET fuiteNOUN ‘Dorothée took escape’⇒‘Dorothée absconded.’ (LVC.full)
(9) Le fossé entre les riches et les pauvres se creusait. ‘The gap between the rich and the poor widened.’ (VID)

t
r
a
i
n

(10) L’enquête n’a pas fait de lumière sur les causes du sinistre. ‘The inquiry shed no light on the disaster’s causes.’
(11) Sa

::::::
lumière

:
la
:::
fait briller. ‘Its light makes it shine.’

(12) Celui-ci met en
::::::
lumière

::
le constat

::
fait plus haut. ‘This one puts into light the observation made above.’

(13) La lumière a enfin été faite sur ce drame. ‘The light was finally shed on this drama.’
(14) Faire une partie de la lumière sur le projet de réforme. ‘To shed part of the light on this reform project.’
(15) [...]

:
la

:::::
lumière nocturne, qui n’a pas

:::
fait l’objet d’autant de recherches que

:
la

::::::
lumière diurne. ‘[...] the nocturnal light,

which has not been subject to as much research as the diurnal light.’
(16) Une enquête a été ouverte pour faire les lumières sur ce drame. ‘An inquiry was launched to shed the lights on this

drama.’
(17) La lumière sur son rôle dans cette affaire doit être faite. ‘The light on its role in this case must be shed.’
(18) La lumière est faite sur ce drame. ‘The light is shed on this drama.’
(19)

::
La

::::::
lumière est

:::
faite de diode LED. ‘The light is made of LED diodes.’

t
e
s
t

8These examples are purely illustrative, we did not use the PARSEME shared task test corpus to design the filters: Ex. (6)
and Ex. (9) come from train and the rest from the Web.

9The lemma of la is le. It has other surface forms, such as l’ in Ex. (15-b) or le in Ex. (12).



Example Candidate f1f2f3f4f5f6f7bf8
∑8

i=1 fi

(11) :::::::
lumièrenoun.sing ::

lapron :::
faitaux

light it makes

nsubj obj

X X X X X X

(12) met en
:::::::
lumièrenoun.sing ::

ledet constatnoun :::
faitverb

puts in light the observation made

obl obj
det acl

X X X X X

(13) LaDET lumièreNOUN.sing aAUX enfinADV étéAUX faiteVERB [...] X X X X X X X X X

(14) Faireverb unedet partienoun deadp ladet lumièrenoun.sing
Make a part of the light

obj nmod det

X X X X X X

(15-a)
::
LaDET :::::

lumièreNOUN.sing ::
faitVERB [...] X X X X X X

(15-b) [...]
:::::
lumièreNOUN.sing :::

faitVERB :
l’
:DET[...] X X X X

(15-c) [...]
:::
faitVERB [...]

::
laDET ::::::

lumièreNOUN.sing [...] X X X X X
(16) [...] faireVERB lesDET lumièresNOUN.plur [...] X X X X X X X
(17) LaDET lumièreNOUN.sing surADP sonDET rôleNOUN X X X X X X

dansADP cetteDET affaireNOUN doitVERB êtreAUX faiteVERB

(18) Ladet lumièrenoun.sing estaux faiteverb
The light is made

nsubj.passdet

X X X X X X X X X

(19) ::
Ladet :::::::

lumièrenoun.sing estaux ::::
faiteverb

The light is made

nsubj.passdet

X X X X X X X X X

Table 2: Sample candidates for the VMWE faire la lumière in Ex. (11-19). The Xsymbol means that the candidate is kept by
a specific filter f (see Sec. 4).

Second, the filtering phase of Seen2020 aims at increasing precision. To this end, 8 filters f1 to f8
take morphosyntactic properties of VMWE components into account.

[f1] Components should be disambiguated: Lemmas may be shared by different words, as in
light NOUN vs. light ADJ and should be disambiguated by their POS. Filter f1, inspired by hypothesis
H1, only retains the candidates with the same POS multiset as the seen VMWE, e.g. {VERB,DET,NOUN}
for faire la lumière. However, as suggested by hypothesis H3, we handle some POS variations observed
in the given VMWE in train, e.g. AUX vs. VERB.10 In Tab. 2, f1 selects (12-19) but excludes (11)
whose POS multiset {AUX,PRON,NOUN} does not match the required multiset {VERB,DET,NOUN}. One
drawback of f1 is not to individually match each lemma and its POS. Thus, it lightsVERB the shedNOUN,
would be extracted based on it shedsVERB the lightNOUN. Although such cases are relatively rare, we would
like to replace POS multisets by 〈lemma-POS〉 multisets in the implementation of f1 in the future.

[f2-f3] Components should appear in specific orders: With f2 and f3, inspired by H2, we ap-
proximate the allowed syntactic transformations by the ordered sequence of POS. In French for instance,
the passivization, illustrated by (5): (i) requires the noun to appear before the verb and (ii) often im-
plies an inserted auxiliary. We split both aspects into specific filters: either we only look at the ordered
POS sequence of the lexicalized components disregarding discontinuities (f2), which allows for more
generalisable sequences,11 or we also consider discontinuities (f3), which appears as more reliable,12

but limited by the corpus’ representativeness. In both cases, we check whether the candidate’s ordered
POS sequence has already been observed for any VMWE having the same POS multiset (for f2) and
belonging to the same VMWE category (for f3), supposing that some allowed syntactic transformations
may depend on the VMWE categories. We illustrate f2 and f3 with the examples in Tab. 2:

• The POS multiset in faire la lumière in (5) is {VERB,DET,NOUN}, as in fermer la porte ‘to close the
door’ (6-7) and prendre la fuite ‘to take the escape’⇒‘to abscond’ (8). For f2, we can thus compare
(11-19) in test with (5-8) in train. The latter suggest that the POS multiset {VERB,DET,NOUN}
only tolerates two POS sequences: DET-NOUN-VERB, as in (5-6) and VERB-DET-NOUN, as in (7-8),
thus excluding, in Tab. 2, NOUN-DET-VERB in (12) or NOUN-VERB-DET in (15-b).

10For instance, (FR) se faire occurs 13 times with faire as a VERB (les restaurants ouverts se faisaientVERB rares ‘open
restaurants were getting scarce’) and 5 times as an AUX (Barbie se faitAUX virer du tournage ‘Barbie is fired from the shooting’).

11This filter is indeed insensitive to the variety of discontinuities that could be associated with the sequence VERB-DET-
NOUN in train, such as VERB-ADV-DET-ADJ-NOUN, VERB-DET-ADJ-NOUN, VERB-ADV-DET-NOUN, etc.

12It would for instance eliminate candidates like Il
:::
fait éteindreverb::

la
::::::
lumière ‘He makes turn off the light’ since the insertion

of a verb between the lexicalized verb and determiner was never observed in train.



• The category of faire la lumière is VID. Other VIDs in train with the same POS multiset are (6-7)
but not (8). For f3 we thus compare (11-19) in test with (5-7) in train. There, the relevant POS
sequences including discontinuities are DET-NOUN-AUX-VERB in (5), DET-NOUN-AUX-ADV-AUX-
VERB in (6) and VERB-DET-NOUN in (7). Among the candidates kept by f3, we find true positives
(18) but also false positives mainly due to literal readings (19). Ex. (17) is wrongly eliminated, since
its sequence of discontinuities has never been observed in train. This highlights the sensitivity of f3
to the training data, even though most VMWEs occur with few insertions (94% with a discontinuity
length lower than 3 in the French corpus), which limits this coverage problem.

Like in f1, a drawback in f2–f3 is to examine the POS sequences independently of the lem-
mas, which may (rarely) affect VMWEs with repeated POS, like (FR) donnerVERB saDET langueNOUN

auADP+DET chatNOUN ‘to give one’s tongue to the cat’⇒‘to give up’.
[f4] Components should not be too far: In the French corpus, 86% of VMWE components are

contiguous or only separated by one element. Therefore f4 excludes candidates whose discontinuity
length is higher than the highest length observed in train (excluding hapaxes) for the given category.
Since long-distance dependencies are rare and their parsing is error-prone, f4 approximates syntactic
coherence of the extracted candidates (hypothesis H4), while at the same time overcoming probable
parsing errors (H3) by simply ignoring the parsing trees. Here, the highest discontinuity length for VIDs
in the French corpus is 6 in (9), which eliminates (15-c) and, wrongly, (17), that respectively have 7 and
8 inserted elements. The scarcity of the training data is a limit for this filter.

[f5] Closer components are preferred over distant ones: With f4, we limit discontinuity to the
highest observable length, but most VMWEs are (quasi-)continuous. In the French corpus, 1,334 VIDs
are continuous while only 2 VIDs have 6 insertions. Therefore, f5 reinforces f4 by favouring candidates
with the lowest discontinuity length in each sentence, which further approximates syntactic coherence
(H4) and insensitivity to parsing errors, as syntactic trees are ignored in f5 (H3). For instance, (15)
yields 3 candidates (15-a,b,c) due to the repetition of the noun and the determiner. The discontinuity
length is 6 for (15-a,b) and 7 for (15-c), therefore only the former are kept.

[f6] Components should be syntactically connected: In accordance with H4, we expect the compo-
nents of a VMWE to be most often syntactically connected. Thus, f6 only retains those candidates which
have: (i) more than 2 components and form a connected dependency subtree, (ii) 2 components connected
by a syntactic chain with up to one insertion. This eliminates coincidental occurrences like (12) and (15-

b,c) but keeps most VMWEs, including those with complex determiners, as in take a number of decisions
obj nmod

.
Candidate (14) also contains a complex determiner but is eliminated since it includes more than 2 com-
ponents. Non-VMWEs wrongly kept by f6 include literal readings like (19).

[f7] Nominal components should appear with a seen inflection: As suggested by H2, f7 focuses
on the nominal inflectional inflexibility, which is relevant for many VMWEs, especially idioms (Fazly
et al., 2009). A candidate is kept by f7 only if: (i) it contains a unique noun whose inflection is the
same as in the VMWE seen in train, or (ii) it contains zero or more than one noun. This filter has 2
language-dependent versions. For languages whose nouns in VMWEs are marked for case (DE, EL,
EU, HU, PL and RO),13 filter f7a only checks the noun’s case inflection. For other languages (BG,
FR, HE, IT and PT), the number inflection is controlled by f7b. In Tab. 2, the singular inflection
of lumière ‘light’ observed in train is respected by all candidates, except (16), which is however a
VMWE. This illustrates again the limits due to data sparcity.

[f8] Nested VMWEs should be annotated as in train: The extraction procedure may yield
embedded candidates, some of which may be spurious. For instance, the VMWE il y a lieu ‘it there
has place’⇒‘one should’ contains another VMWE il y a ‘it there has’⇒‘there is’, as well as a literal
occurrence of a lieu ‘has place’⇒‘takes place’. Arguably, all occurrences of the outermost VMWE
should have the same nested annotation, whatever the context. Therefore, filter f8mimics the annotation
done in train to decide whether to keep embedded candidates. The VMWE faire la lumière has never
been seen as embedded in another VMWE in train, therefore all candidates in Tab. 2 are kept.

13We then require the proportion of VMWEs with noun case information to be higher than 50% of the total, since some
VMWEs are likely to include foreign words with case.



As highlighted in the last column of Tab. 2, the activation of all 8 filters is not enough to distinguish
VMWEs from non-VMWEs, since it results both in false positives (19) and in true negatives (14;16-17).
The overall goal is, thus, to determine, for each language, the optimal set of filters to activate on test
among the 28 = 256 combinations. To achieve this, we consider as the best combination the one that
maximizes the seen VMWE identification F-score obtained on dev, as described in Section 5.

5 Results

We perform experiments on 11 languages of the PARSEME shared task 1.1. The dev corpora are used
for tuning the 8 parameters, i.e. choosing the optimal combination (among 28=256 combinations) of
activated filters for each language. The best combination of filters is evaluated on the test corpora, and
compared with the state-of-the-art systems trained and evaluated on the same data, as described is Sec. 2.

5.1 Parameter Tuning

Figure 1 shows, for FR, PL, PT and RO (see other languages in App. A), the seen VMWE identification F-
score as defined in Ramisch et al. (2018), henceforth Seen-VMWEI F-score, on dev as a function of the
256 combinations. The focus on the left of the gap is on the 10 combinations with highest performances,
while the curves to the right of the gap illustrate the decrease of performances with the 65 least relevant
combinations. The gaps are placeholders for the 181 combinations with intermediate performances that
were omitted for better readability. Scores decrease more in FR, PT and RO (by 58 to 75%) than in
PL (15%).14 The lowest scores are obtained in FR, PT and RO when few filters are activated (i.e. 1–
5 black boxes occur in the rightmost column of the mosaic), whereas the best ones correspond to 3–5
activated filters. In PL, we note an opposite tendency: 3 activated filters lead to better results than 6.
Some statistics and interpretation about the most frequently activated filters are proposed in Section 6.
Note however that all languages reach a plateau for the best 10 combinations, which highlights the fact
that the tuning is not that critical, and consequently allows some generalization. Once the best (i.e. the
leftmost) combination has been found, it is applied on test for the final evaluation.

5.2 Comparison with the PARSEME Shared Task Systems

Fig. 2 compares the Seen-VMWEI F-score per language obtained on test by Seen2020 and 4
PARSEME shared task (edition 1.1) systems. Seen2020 (shown with a solid line) outperforms V arIDE
(which also specializes in seen VMWEs), gets better scores than TRAPACCS for 9/11 languages and
ranks first for 7 languages.

Tab. 3 further compares macro-average scores on the 11 languages weighted according to the avail-
able data per language. Seen2020 outperforms all 4 PARSEME shared task systems on the seen data
(i.e. in Seen-VMWEI F-scores) and even on all (seen and unseen) data, although our system was not
conceived to deal with unseen VMWEs at all and its F-score on unseen VMWEs is null. This shows that
thorough account of seen VMWEs greatly boosts global MWE identification. In other words, with com-
peting systems being extremely limited to deal with unseen VMWEs (Savary et al., 2019a), our method’s
superiority on (more frequent) seen VMWEs compensates the absence of treatment for unseen ones.

Comparison with SHOMA 2019 is harder since it was evaluated outside the PARSEME shared task
on 4 selected languages only.15 On the 2 common languages, SHOMA 2019 performs better than
Seen2020 for German (F=0.80 vs. F=0.78) but worse for French (F=0.86 vs. F=0.88).

5.3 Error Analysis

Errors fall can be false negatives (affecting recall) and false positives (affecting precision). False neg-
atives (additionally to unseen VMWEs, which, by the definition of the task, are never identified) are

14This is consistent with Savary et al. (2019b), who employ a procedure similar to ours for candidate extraction. Their
number of pre-extracted candidates is 1.35 to 7.9 times lower in Polish than in Greek, German, Portuguese and Basque, despite
similar amounts of annotated VMWEs. This shows that Polish has a lower potential for literal and coincidental occurrences, so
our filters have a relatively small amount of false positives to filter out, which yields the relatively flat curve for PL in Fig. 1.

15Its code was openly published but we did not succeed in making it operational.



Figure 1: Seen-VMWEI F-score for FR, PL, PT and RO in dev as a function of the activated filters (in black) with f1
(resp. f8) on the top (resp. at the bottom) of the mosaic. Only the 10 (resp. 65) configurations with highest (resp. lowest)
F-score are represented to the left (resp. right) of the gap, e.g., the best FR score is obtained with f1, f4, f6 and f8 active.

notably due to: (i) inconsistent POS annotations, as in (FR) prendre au sérieuxADJ/NOUN ‘to take seri-
ously’, and (ii) data scarcity, e.g. (PL) zrobienie zakupówGen ‘doing shopping’ was seen in train
with the noun in genitive, while it occurs in test with accusative zrobić zakupyAcc ‘do shopping’.16

False positives have a variety of causes. First, the optimal selection of filters fails to eliminate some
coincidental occurrences like (FR)

::::::
mener à bien sa

::::::::
politique ‘lead to good one’s policy’⇒‘fulfil one’s

policy’, where a variant of mener sa politique ‘carry out one’s policy’ was wrongly identified. Second,
when selecting the POS sequences allowed by f2, repeated POS are not distinguished although their
order might be constrained: in (FR) s’PRON yPRON connaîtreVERB ‘self there know’⇒‘to be an expert’, the
pronoun se (resp. y) always comes first (resp. second), so candidates with the inverse order are necessarily
spurious. Third, frequent pronouns and verbs, when inflected, can generate many spurious candidates be-

16Such case variations with gerunds are regular in Slavic languages and might be addressed by more fine-grained language-
specific filters, at the expense of lesser genericity.

Figure 2: Seen-VMWEI F-score on test of Seen2020 vs. 4 PARSEME shared
task systems as a function of the language

System Macro-average F1

seen seen+unseen
SHOMA 0.81 0.64
TRAVERSAL 0.77 0.59
TRAPACCS 0.73 0.57
VarIDE 0.61 0.49
Seen2020 0.83 0.67

Table 3: Macro-average F1 scores for
4 PARSEME shared task systems and
Seen2020.



cause their inflectional inflexibility is not covered by filters. For instance, (FR) nous faisons ‘we make’ is
wrongly marked as a variant of il fait ‘it makes’⇒‘there is’. Third, some gold VMWE annotations are in-
complete or missing. This explains the performance gap in RO between Seen2020 and TRAV ERSAL
(0.74 vs. 0.88 for Seen-VMWEI F-scores): a standalone occurrence of the lemma avea ‘to have’ wrongly
annotated once as an LVC.full generates a drop of 26 points of F-score for the LVC.full category (0.32
vs. 0.58) Also, 22% of false positive IRVs are due to only one VMWE (se poate ‘oneself can’⇒‘it is
likely’). Its verbal inflexion, here disregarded, could be used profitably, since this VMWE never occurs
in plural while non-VMWE combinations of sine ‘self ’ with poate ‘can’ in plural are frequent.

5.4 Last-Minute Results and Generalization

Shortly before submitting the final version of this paper, the results of edition 1.2 of the PARSEME shared
task were announced.17, 18 Seen2Seen (actually, Seen2020) scored best (out of 2) in the closed track
and second (out of 9) across both tracks in terms of global MWE-based F-score. It outperformed 6 other
open track systems, notably those using complex neural architectures and contextual word embeddings.
It scored best (F=0.65), across both tracks in Italian, and second, with less than 0.01 point F-score
difference behind the best (open track) system in Polish, Portuguese and Swedish (global F=0.82, F=0.73
and F=0.71). Also for phenomenon-specific measures Seen2Seen scored second across both tracks on
both discontinuous and seen VMWEs. The only (open) system which outperformed Seen2Seen is a deep
learning system using a generic multilingual BERT model (Devlin et al., 2019) tuned for joined parsing
and VMWE identification. It scored a bit less than 0.04 F-measure point higher in the general ranking.
Together with Seen2Seen, we submitted another system, Seen2Unseen, which relies on the former for
seen VMWEs and adds discovery methods to cover unseen VMWE (Pasquer et al., 2020b).

6 Interpretability and Generalization

Our method proves encouraging. Not only does it outperform state-of-the-art systems, even those in
the open track, but also it is interpretable. First, it is straightforward to identify the filters responsible
for errors made by the system, enabling incremental development and customization to specific needs.
Second, the filters are based on well known and pervasive linguistic properties of VMWEs. Third, these
properties are generic enough to allow us to put forward cross-language interpretations and perspectives.

For instance, the differences observed between the corpora in FR, PT, RO on the one hand and PL on
the other hand could be due to the fact that the filters were initially conceived for a Romance language
(FR). Consequently, they may tend to perform better for languages from the same family than for Slavic
ones, where fine case-number inter-dependencies occur in nouns (BG, even if Slavic, exhibits no case
inflection). Also, our filters are less relevant to languages with a large number of single-token VMWEs,
like HU (where our system’s performances are still very high).

We may also observe interesting cross-language tendencies, such as a performance drop in BG, EL,
EU, IT and PT at the beginning of the second part of Fig. 1 and 3. It occurs with the simultaneous
activation of filters f2, f4 and f5 while f3 and f6 are inactive. This might be due to the fact that this
configuration favors the nearest components without looking at their syntactic connection and uses f2
which is less generic than f3 to determine the allowed POS sequences.

Globally the most discriminative filters across all 11 corpora are: f8 (embedded sequences) selected
for most languages (8); f4 (category-specific maximal linear distance between components) and f6
(syntactic distance) for 7 languages; f5 (minimal linear distance favored) for 6 languages; f2 (sequence
of POS of lexicalized components) for 4 languages; f7 (noun inflection) for 3 languages and f3 (se-
quence of POS including discontinuities) for 2 languages. f1 (POS disambiguation) only appears in the
best configuration for French. The single optimal cross-language configuration – based on the highest
macro-averaged F-score on dev (F = 0.79) – is obtained when f2, f4, f5 and f6 are activated.19 In
other words, the distance between components, either linear or syntactic, appears as much more discrim-

17This subsection was not peer-reviewed.
18
http://multiword.sourceforge.net/sharedtaskresults2020/

19The lowest score (F = 0.76), obtained when no filter is active, is 3 points lower than the best configuration per language.
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inative than nominal fixity. This should however be tempered by the fact that not all VMWEs contain a
unique noun, making f7 much more specific than those filters based on distance.

The last-minute results mentioned in Sec. 5.4 show that our system generalizes well to new languages
and remains competitive even when compared to contextual embedding models. It might be argued
that its generalization power heavily depends on high-quality predicted POS tags and dependency trees,
extensively used in filters, but potentially noisy (H3). However, the PARSEME corpora rely on Universal
Dependencies (Nivre et al., 2020) and on the tools trained on them, whose quality is increasing. Recent
results show POS tagging and parsing accuracies mostly exceed 90% and 80% for the languages of the
PARSEME corpora.20 Moreover, syntax is often approximated by POS sequences (in f2–f5) rather
than used directly (f6). Finally, language-specific tuning of the filters mitigates low-quality parsing.

It could also be argued that filters such as f7 could cover all types of inflection (e.g. verb tense,
mood). We have extensively tested this hypothesis in previous work, automatically generating all possi-
ble feature-value combinations and selecting the most discriminant ones (Pasquer et al., 2020a). How-
ever, the results of this (computationally intensive) process were worse than those of Seen2020. More
insight into generalization might stem from covering new languages and additional training data.

7 Conclusions and Future Work

We presented Seen2020, a system for the identification of seen VMWEs based on a combination of
morphosyntactic filters. Based on state-of-the-art results, our method deliberately avoids complex ma-
chine learning and deep learning techniques for several reasons. Firstly, the type-level idiosyncrasy and
strong lexicalization of MWEs (cf. Sec. 3), evidenced in many languages, suggest that distributional
semantics might not be a strong ally in distinguishing MWEs from non-MWEs. This is confirmed by the
recent results of deep-learning-based MWE identification systems, which – even if partly competitive
with respect to the state of the art – still remain largely unsatisfactory. Secondly, the recent MWE iden-
tification results show: (i) the critical difficulty of generalizing over unseen data (ii) considerable room
for improvement with respect to morphosyntactic variants of seen MWEs, (iii) the very low frequency
of literal readings of MWEs. This means that focus on seen data and linguistic characterization of their
variants should be enough to boost the global MWE identification results. Thirdly, we wish to avoid the
complex architectures and non-interpretable results of neural methods.

Our system’s main contributions are: (i) its simplicity since no complex tuning is necessary, (ii) higher
performances (for 9/11 languages) than the best closed-track systems of a recent shared task and even
higher than the best open-track system for 7 languages, (iii) ability to highlight linguistic properties of
VMWEs, (iv) interpretability of the results and easy incremental development based on error analysis,
(v) adaptability as new filters can be easily added. The system’s main drawbacks are its high sensitivity to
scarcity and the quality of the VMWE annotations (despite its ability to mitigate errors in other annotation
layers, such as POS tagging or syntax).

As future work, we would like to further enhance our system’s design, e.g. by representing VMWE
as multisets of 〈lemma-POS〉 pairs rather than of lemma and POS multisets separately, which will help
avoid some errors, as discussed above. Deeper per-language analyses of the results might also bring more
insights on the generalization of our method and to the nature of VMWEs in general. For instance, we
can study the generalization of our system on out-of-domain data, since we heavily rely on the lemmas
of seen VMWEs, which may vary considerably across topics, registers and domains.
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Appendix A. Performances for Other Languages

Figure 3: Task F-score in dev according to the activated f1 to f8 filters (in black) with f1 (resp. f8) on the top (resp. at the
bottom) of the mosaic. Only the 10 (resp. 65) configurations over 256 with higher (resp. lower) F-score are represented.
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