An a posteriori-based adaptive preconditioner for controlling a local algebraic error norm
Résumé
This paper introduces an adaptive preconditioner for iterative solution of sparse linear systems arising from partial differential equations with self-adjoint operators. This preconditioner allows to control the growth rate of a dominant part of the algebraic error within a fixed point iteration scheme. Several numerical results that illustrate the efficiency of this adaptive preconditioner with a PCG solver are presented and the preconditioner is also compared with a previous variant in the literature.
Fichier principal
An a posteriori-based adaptive preconditioner for controlling a local algebraic error norm.pdf (862.99 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|