Long-distance spin-transport across the Morin phase transition up to room temperature in the ultra-low damping α-Fe$_2$O$_3$ antiferromagnet - Archive ouverte HAL
Article Dans Une Revue Nature Communications Année : 2020

Long-distance spin-transport across the Morin phase transition up to room temperature in the ultra-low damping α-Fe$_2$O$_3$ antiferromagnet

Résumé

Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be ≤ 10$^{-5}$ as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices.
Fichier principal
Vignette du fichier
NatComm_11_6332_(2020).pdf (921.3 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03010584 , version 1 (13-06-2024)

Identifiants

Citer

Romain Lebrun, Andrew Ross, Olena Gomonay, Vincent Baltz, Ursula Ebels, et al.. Long-distance spin-transport across the Morin phase transition up to room temperature in the ultra-low damping α-Fe$_2$O$_3$ antiferromagnet. Nature Communications, 2020, 11, pp.6332. ⟨10.1038/s41467-020-20155-7⟩. ⟨hal-03010584⟩
144 Consultations
26 Téléchargements

Altmetric

Partager

More