A learning-based mathematical programming formulation for the automatic configuration of optimization solvers - Archive ouverte HAL
Article Dans Une Revue Lecture Notes in Computer Science Année : 2020

A learning-based mathematical programming formulation for the automatic configuration of optimization solvers

Résumé

We propose a methodology, based on machine learning and optimization, for selecting a solver configuration for a given instance. First, we employ a set of solved instances and configurations in order to learn a performance function of the solver. Secondly, we formulate a mixed-integer nonlinear program where the objective/constraints explicitly encode the learnt information, and which we solve, upon the arrival of an unknown instance, to find the best solver configuration for that instance, based on the performance function. The main novelty of our approach lies in the fact that the configuration set search problem is formulated as a mathematical program, which allows us to a) enforce hard dependence and compatibility constraints on the configurations, and b) solve it efficiently with off-the-shelf optimization tools.
Fichier principal
Vignette du fichier
lod20.pdf (277.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03008720 , version 1 (16-11-2020)

Identifiants

Citer

Gabriele Iommazzo, Claudia D’ambrosio, Antonio Frangioni, Leo Liberti. A learning-based mathematical programming formulation for the automatic configuration of optimization solvers. Lecture Notes in Computer Science, In press, Lecture Notes in Computer Science, 12565, pp.700-712. ⟨10.1007/978-3-030-64583-0_61⟩. ⟨hal-03008720⟩
84 Consultations
237 Téléchargements

Altmetric

Partager

More