Trapping of swimming microalgae in foam - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of the Royal Society Interface Année : 2020

Trapping of swimming microalgae in foam

Résumé

Massive foam formation in aquatic environments is a seasonal event that has a significant impact on the stability of marine ecosystems. Liquid foams are known to filter passive solid particles, with large particles remaining trapped by confinement in the network of liquid channels and small particles being freely advected by the gravity-driven flow. By contrast, the potential role of a similar retention effect on biologically active particles such as phytoplankton cells is still relatively unknown. To assess if phytoplankton cells are passively advected through a foam, the model unicellular motile alga Chlamydomonas reinhardtii (CR) was incorporated in a bio-compatible foam, and the number of cells escaping the foam at the bottom was measured in time. Comparing the escape dynamics of living and dead CR cells, we found that dead cells are totally advected by the liquid flow towards the bottom of the foam, as expected since the diameter of CR remains smaller than the typical foam channel diameter. By contrast, living motile CR cells escape the foam at a significantly lower rate: after 2 hours, up to 60% of the injected cells may remain blocked in the foam, while 95% of the initial liquid volume in the foam has been drained out of the foam. Microscopic observation of the swimming CR cells in a chamber mimicking the cross-section of foam internal channels revealed that swimming CR cells accumulate near channels corners. A theoretical analysis based on the probability density measurements in the micro chambers has shown that this trapping at the microscopic scale contributes to explain the macroscopic retention of the microswimmers in the foam. At the crossroads of distinct fields including marine ecology of planktonic organisms, fluid dynamics of active particles in a confined environment and the physics of foam, this work represents a significant step in the fundamental understanding of the ecological consequences of aquatic foams in water bodies.

Dates et versions

hal-03004737 , version 1 (13-11-2020)

Identifiants

Citer

Quentin Roveillo, Julien Dervaux, Yuxuan Wang, Florence Rouyer, Drazen Zanchi, et al.. Trapping of swimming microalgae in foam. Journal of the Royal Society Interface, 2020, 17 (168), pp.20200077. ⟨10.1098/rsif.2020.0077⟩. ⟨hal-03004737⟩
39 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More