Imperceptible Adversarial Attacks on Tabular Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Imperceptible Adversarial Attacks on Tabular Data

Résumé

Security of machine learning models is a concern as they may face adversarial attacks for unwarranted advantageous decisions. While research on the topic has mainly been focusing on the image domain, numerous industrial applications, in particular in finance, rely on standard tabular data. In this paper, we discuss the notion of adversarial examples in the tabular domain. We propose a formalization based on the imperceptibility of attacks in the tabular domain leading to an approach to generate imperceptible adversarial examples. Experiments show that we can generate imperceptible adversarial examples with a high fooling rate.
Fichier principal
Vignette du fichier
attacks_tabular_data.pdf (371.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-03002526 , version 1 (12-11-2020)

Identifiants

  • HAL Id : hal-03002526 , version 1

Citer

Vincent Ballet, † Xavier, Jonathan Aigrain, Thibault Laugel, Pascal Frossard, et al.. Imperceptible Adversarial Attacks on Tabular Data. NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness and Privacy (Robust AI in FS 2019), Dec 2019, Vancouver, Canada. ⟨hal-03002526⟩
217 Consultations
611 Téléchargements

Partager

More