Spacelike surfaces of constant Gaussian curvature in Lorentz-Minkowski space - Archive ouverte HAL
Chapitre D'ouvrage Année : 2017

Spacelike surfaces of constant Gaussian curvature in Lorentz-Minkowski space

Andrea Seppi

Résumé

In this paper we survey several results on the study of spacelike surfaces of constant Gaussian curvature K < 0 in Lorentz-Minkowski space of dimension (2+1). Moreover, we show that the space of entire K-surfaces with bounded second fundamental form, up to translations, is naturally parameterized by an infinite-dimensional vector space, namely the tangent space at the trivial point of universal Teichmüller space.
Fichier principal
Vignette du fichier
standard version.pdf (498.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03000808 , version 1 (12-11-2020)

Identifiants

  • HAL Id : hal-03000808 , version 1

Citer

Andrea Seppi. Spacelike surfaces of constant Gaussian curvature in Lorentz-Minkowski space. Differential Geometry in Lorentz-Minkowski space (ed. Rafael López Camino), EUG, Granada, 2017. ⟨hal-03000808⟩
27 Consultations
44 Téléchargements

Partager

More