Fractional Chiral Hinge Insulator - Archive ouverte HAL
Article Dans Une Revue Physical Review B Année : 2021

Fractional Chiral Hinge Insulator

Anna Hackenbroich
  • Fonction : Auteur
Ana Hudomal
  • Fonction : Auteur
Norbert Schuch
  • Fonction : Auteur
B. Andrei Bernevig
  • Fonction : Auteur
  • PersonId : 1082422
Nicolas Regnault

Résumé

We propose and study a wave function describing an interacting three-dimensional fractional chiral hinge insulator (FCHI) constructed by Gutzwiller projection of two noninteracting second-order topological insulators with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize the model states via the entanglement entropy and charge-spin fluctuations. We show that the FCHI possesses fractional chiral hinge modes characterized by a central charge c=1 and Luttinger parameter K=1/2, like the edge modes of a Laughlin 1/2 state. The bulk and surface topology is characterized by the topological entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE, we show that the gapped surfaces host an unconventional two-dimensional topological phase. In a clear departure from the physics of a Laughlin 1/2 state, we find a TEE per surface compatible with (ln2)/2, half that of a Laughlin 1/2 state. This value cannot be obtained from topological quantum field theory for purely two-dimensional systems. For the sake of completeness, we also investigate the topological degeneracy.

Dates et versions

hal-02999514 , version 1 (10-11-2020)

Identifiants

Citer

Anna Hackenbroich, Ana Hudomal, Norbert Schuch, B. Andrei Bernevig, Nicolas Regnault. Fractional Chiral Hinge Insulator. Physical Review B, 2021, 103 (16), pp.161110. ⟨10.1103/PhysRevB.103.L161110⟩. ⟨hal-02999514⟩
68 Consultations
0 Téléchargements

Altmetric

Partager

More