Traversing the Red–Green–Blue Color Spectrum in Rationally Designed Cupredoxins - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of the American Chemical Society Année : 2020

Traversing the Red–Green–Blue Color Spectrum in Rationally Designed Cupredoxins

Résumé

Blue copper proteins have a constrained Cu(II) geometry that has proven difficult to recapitulate outside native cupredoxin folds. Previous work has successfully designed green copper proteins which could be tuned blue using exogenous ligands, but the question of how one can create a self-contained blue copper site within a de novo scaffold, especially one removed from a cupredoxin fold, remained. We have recently reported a red copper protein site within a three helical bundle scaffold which we later revisited and determined to be a nitrosocyanin mimic, with a CuHis 2 CysGlu binding site. We now report efforts to rationally design this construct toward either green or blue copper chromophores using mutation strategies that have proven successful in native cupredoxins. By rotating the metal binding site, we created a de novo green copper protein. This in turn was converted to a blue copper protein by removing an axial methionine. Following this rational sequence, we have successfully created red, green, and blue copper proteins within an alpha helical fold, enabling comparisons for the first time of their structure and function disconnected from the overall cupredoxin fold.

Domaines

Autre
Fichier principal
Vignette du fichier
preprint.pdf (1.13 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02995240 , version 1 (18-11-2020)

Identifiants

Citer

Karl Koebke, Victor Sosa Alfaro, Tyler Pinter, Aniruddha Deb, Nicolai Lehnert, et al.. Traversing the Red–Green–Blue Color Spectrum in Rationally Designed Cupredoxins. Journal of the American Chemical Society, 2020, 142 (36), pp.15282-15294. ⟨10.1021/jacs.0c04757⟩. ⟨hal-02995240⟩
42 Consultations
65 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More