A hierarchical approach to Big Data Hierarchical Progressive Surveys (HiPS) and Multi-Order Coverage (MOC) Maps - Archive ouverte HAL
Autre Publication Scientifique IAU Joint Discussion 7: Space-Time Reference Systems for Future Research at IAU General Assembly-Beijing. Online at http://referencesystems.info/iau-joint-discussion-7.html Année : 2015

A hierarchical approach to Big Data Hierarchical Progressive Surveys (HiPS) and Multi-Order Coverage (MOC) Maps

Résumé

The increasing volumes of astronomical data require practical methods for data access, visualisation and analysis. Hierarchical methods based on sky tessellation techniques enable a multi-resolution approach to astronomy data from the individual pixels up to the whole sky. The Hierarchical Progressive Survey (HiPS) scheme based on the HEALPix is able to describe images, catalogues and 3-dimensional data cubes and is a practical solution for managing large volumes of heterogeneous data. We present the development of HiPS, and its implementation for ~200 diverse data sets at the CDS and other data centres. We highlight the ease of implementation and the use of HiPS with Aladin Lite and other applications.
IAU_Allen_DivB_key2.pdf (9.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02994008 , version 1 (07-11-2020)

Identifiants

Citer

Mark G. Allen, Pierre Fernique. A hierarchical approach to Big Data Hierarchical Progressive Surveys (HiPS) and Multi-Order Coverage (MOC) Maps. 2015. ⟨hal-02994008⟩
25 Consultations
9 Téléchargements

Partager

More