Characterizing measures for the assessment of cluster analysis and community detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Characterizing measures for the assessment of cluster analysis and community detection

Nejat Arinik
Rosa Figueiredo
Vincent Labatut

Résumé

The problem of comparing two partitions of the same set occurs in a number of situations, the most widespread being probably the assessment of cluster anal- ysis and community detection results. In these contexts, one has computed the clusters of a dataset, or the community structure of a network. This result takes the form of a partition of the set of data points or set of nodes, respectively. One then wants to compare this estimation with some ground-truth also taking the form of a partition. Alternatively, one has computed several such estimations, for instance using several algorithms, and wants to compare them to each other.
Fichier principal
Vignette du fichier
Characterizing_measures_for_the_assessment_of_cluster_analysis_and_community_detection.pdf (174.26 Ko) Télécharger le fichier
présentation.pdf (756.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02993542 , version 1 (06-11-2020)

Licence

Identifiants

  • HAL Id : hal-02993542 , version 1

Citer

Nejat Arinik, Rosa Figueiredo, Vincent Labatut. Characterizing measures for the assessment of cluster analysis and community detection. 11ème Conférence Modèles & Analyse de Réseaux : approches mathématiques et informatiques (MARAMI), Oct 2020, Montpellier (en ligne), France. pp.4. ⟨hal-02993542⟩

Collections

UNIV-AVIGNON LIA
106 Consultations
73 Téléchargements

Partager

More