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@ Context: comparing two non-overlapping partitions through an
external measure — cluster analysis, graph partitioning

e ground-truth vs. estimated partition, 2 estimated partitions
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@ Context: comparing two non-overlapping partitions through an
external measure — cluster analysis, graph partitioning

e ground-truth vs. estimated partition, 2 estimated partitions

@ Issues:

@ profusion of available measures — trend to follow popular measures
@ lack of comprehensive comparison
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@ Our solution: a new framework of evaluation
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@ our framework
@ Characterizing of the measures
@ Regression Analysis

@ Experiments
© Results
@ Practical case

e Conclusion
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Our framework: Characterizing of the measures
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Our framework: Characterizing of the measures
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Our framework: Characterizing of the measures
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Our framework: proposed deterministic transformations
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Our framework: Regression Analysis

Our multiple linear regression model:

y= Z Z (ﬁo:'jfimj
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. - M
@ p.;: regression coefficients

@ ti(1<i<T)andm; (1 <j < M): binary dummy variables, where T =
number of transformations and M = number of measures

@ €. common error
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@ p.;: regression coefficients

@ ti(1<i<T)andm; (1 <j < M): binary dummy variables, where T =
number of transformations and M = number of measures

@ €. common error

@ Relative importance analysis — squared beta weights
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@ Our data: 50, 000 pairs of partitions

measures (m) = {Rand Index (Dg,), Adjusted Rand Index (Dagy),
Fowlkes-Mallows Index (Dryy), Jaccard Index (D), F-measure (Dg),
Normalized Mutual Information (Dyu)}

transformations (t) = {K New Cluster, Singleton Clusters, 1 New Cluster,
Neighbor Cluster Swap, Orthogonal Clusters}

number of elements (n) = 3240, 4320, .., 12960

number of clusters (k) =2, 3, .., 11

heterogeneity of cluster sizes (h) = 0,0.1,..,0.9

transformation intensity (q) = 0.1,0.2, .., 1

@ Regression assumptions

by design — no collinearity between the quantitative variables
large dataset & central limit theorem — no issue with the residuals
heteroscedasticity — increase of the variance in y with parameter q
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Practical case: vote application in European Parliam

N. Arinik & R. Figueiredo & V. Labatut. Multiple Partitioning of Multiplex Signed Networks. Social Networks, 2020, 60, 83-102.

@ Requirements:

@ up to 3 clusters
@ n fixed

@ Expectations:

@ detecting an extra cluster, or a missing one, is an
important change — the difference of k between the
original and transformed partitions

@ the effect of k should be stronger than that of h

@ adissimilarity score should decrease, when h
increases
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@ selected measure: Dr (F-measure)
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Conclusion & Further research

@ a new generic framework of evaluation
@ ease of interpretation for the results
@ typology of measures based on their performances

Orthogonal Clusters k New Clusters Neighbor Cluster Swap 1 New Cluster Singleton Clusters
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Conclusion & Further research

@ a new generic framework of evaluation
@ ease of interpretation for the results
@ typology of measures based on their performances

Orthogonal Clusters k New Clusters Neighbor Cluster Swap 1 New Cluster Singleton Clusters

@ evaluation with more measures and transformations
@ designing the framework for graph similarity measures
@ designing the framework for overlapping partitions
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Thank you for your attention!

Contact Information:
Nejat ARINIK
nejat.arinik@univ-avignon.fr
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