An exact mapping between loop-erased random walks and an interacting field theory with two fermions and one boson - Archive ouverte HAL
Article Dans Une Revue SciPost Physics Année : 2020

An exact mapping between loop-erased random walks and an interacting field theory with two fermions and one boson

Résumé

We give a simplified proof for the equivalence of loop-erased random walks to a lattice model containing two complex fermions, and one complex boson. This equivalence works on an arbitrary directed graph. Specifying to the ddd-dimensional hypercubic lattice, at large scales this theory reduces to a scalar ϕ4ϕ4\phi^4-type theory with two complex fermions, and one complex boson. While the path integral for the fermions is the Berezin integral, for the bosonic field we can either use a complex field ϕ(x)∈Cϕ(x)∈C\phi(x)\in \mathbb C (standard formulation) or a nilpotent one satisfying ϕ(x)2=0ϕ(x)2=0\phi(x)^2 =0. We discuss basic properties of the latter formulation, which has distinct advantages in the lattice model.
Fichier principal
Vignette du fichier
SciPostPhys_9_5_063.pdf (233.47 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-02988816 , version 1 (01-07-2020)
hal-02988816 , version 2 (23-08-2024)

Licence

Identifiants

Citer

Assaf Shapira, Kay Joerg Wiese. An exact mapping between loop-erased random walks and an interacting field theory with two fermions and one boson. SciPost Physics, 2020, 9 (5), pp.063. ⟨10.21468/SciPostPhys.9.5.063⟩. ⟨hal-02988816v2⟩
71 Consultations
2 Téléchargements

Altmetric

Partager

More