On the small-time local controllability of a KdV system for critical lengths
Abstract
This paper is devoted to the local null-controllability of the nonlinear KdV equation equipped the Dirichlet boundary conditions using the Neumann boundary control on the right. Rosier proved that this KdV system is small-time locally controllable for all non-critical lengths and that the uncontrollable space of the linearized system is of finite dimension when the length is critical. Concerning critical lengths, Coron and Cr\'{e}peau showed that the same result holds when the uncontrollable space of the linearized system is of dimension 1, and later Cerpa, and then Cerpa and Cr\'epeau established that the local controllability holds at a finite time for all other critical lengths. In this paper, we prove that, for a class of critical lengths, the nonlinear KdV system is {\it not} small-time locally controllable.
Domains
Analysis of PDEs [math.AP]Origin | Files produced by the author(s) |
---|
Loading...