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ON THE SMALL-TIME LOCAL CONTROLLABILITY OF A KDV SYSTEM
FOR CRITICAL LENGTHS

JEAN-MICHEL CORON, ARMAND KOENIG, AND HOAI-MINH NGUYEN

ABSTRACT. This paper is devoted to the local null-controllability of the nonlinear KdV equation
equipped the Dirichlet boundary conditions using the Neumann boundary control on the right.
Rosier proved that this KdV system is small-time locally controllable for all non-critical lengths
and that the uncontrollable space of the linearized system is of finite dimension when the length is
critical. Concerning critical lengths, Coron and Crépeau showed that the same result holds when
the uncontrollable space of the linearized system is of dimension 1, and later Cerpa, and then
Cerpa and Crépeau established that the local controllability holds at a finite time for all other
critical lengths. In this paper, we prove that, for a class of critical lengths, the nonlinear KdV
system is not small-time locally controllable.

Key words. Controllability, nonlinearity, Korteweg—de Vries
AMS subject classification. 93B05, 93C15, 76B15.

CONTENTS
(L.__Introduction 1
(1.1. Bibliography| 2
(L.2. Statement of the resultl 2
[1.3. Ideas of the analysis| 6
[1.4.  Structure of the paper| 7
[2. Properties of controls steering 0 at time 0 to 0 at time 7] 7
B Attamabl O - [ T omd 19
[4.  Usetul estimates for the linear KdV equations| 22
[4.1. On the linear KdV-Burgers equations| 22
[4.2. On the linear KdV equations| 26
5. Small time local null-controllability of the KAV system| 30
6. Controllability of the KdV system with controls in H | 37
[Appendix A. On symmetric tunctions of the roots ot a polynomiall 45
[Appendix B. On the real roots of H, the common roots of G and H, and the behavior of |
| [det Q] 46
[References| 50

1. INTRODUCTION

We are concerned about the local null-controllability of the (nonlinear) KdV equation equipped
the Dirichlet boundary conditions using the Neumann boundary control on the right. More pre-
cisely, given L > 0 and T' > 0, we consider the following control system

Y (t, ) + Yo (t, ) + Yaza (6, ) + y(t, )y (t,2) =0  for t € (0,T), x € (0,L),
(1.1) y(t,x =0)=y(t,x =L)=0 for t € (0, 7)),

Yo (t,z = L) = u(t) for t € (0, 7)),
1
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and
(1.2) y(t =0,z) = yo(x) for z € (0, L).

Here y is the state, yg is the initial data, and wu is the control. More precisely, we are interested
in the small-time local controllability property of this system.

The KdV equation has been introduced by Boussinesq [15] and Korteweg and de Vries [30] as
a model for propagation of surface water waves along a channel. This equation also furnishes
a very useful nonlinear approximation model including a balance between a weak nonlinearity
and weak dispersive effects. The KdV equation has been intensively studied from various aspects
of mathematics, including the well-posedness, the existence and stability of solitary waves, the
integrability, the long-time behavior, etc., see e.g. [46, 33], 29] 44} [31].

1.1. Bibliography. The controllability properties of system and (or of its variants)
has been studied intensively, see e.g. the surveys |40} [19] and the references therein. Let us briefly
review the existing results on and . For initial and final datum in L?(0, L) and controls
in L2(0, T), Rosier [38] proved that the system is small-time locally controllable around 0 provided
that the length L is not critical, i.e., L ¢ N, where

[k2 + ki + 12
(1.3) N = {27T %; k,leN*}.

To this end, he studied the controllability of the linearized system using the Hilbert Uniqueness
Method and compactness-uniqueness arguments. Rosier also showed that the linearized system
is controllable if L ¢ N. He as well established that when L € N, the linearized system is not
controllable. More precisely, he showed that there exists a non-trivial finite-dimensional subspace
M of L%(0, L) such that its orthogonal space is reachable from 0 whereas M is not.

To tackle the control problem for the critical length L € N with initial and final datum in
L?(0,L) and controls in L?(0,T), Coron and Crépeau introduced the power series expansion
method [24]. The idea is to take into account the effect of the nonlinear term yy, absent in
the linearized system. Using this method, they showed [24] (see also [22] section 8.2]) that system
and is small-time locally controllable if L = m2x for m € N, satisfying

(1.4) B(k,1) € N, x N, with &% + kI +1* = 3m? and k # [.

In this case, dim M = 1 and M is spanned by 1 — cosz. Cerpa [18] developed the analysis in [24]
to prove that system ([1.1]) and (1.2]) is locally controllable at a finite time in the case dim M = 2.

This corresponds to the case where
k2 + kI + 12
L—om/ %

for some k, I € N, with k& > [, and there is no m,n € N, with m > n and m? + mn + n? =
k% + kl + [?. Later, Crépeau and Cerpa [20] succeeded to extend the ideas in [I8] to obtain the
local controllability for all other critical lengths at a finite time. To summarize, concerning the
critical lengths with initial and final datum in L?(0, L) and controls in L?(0,7), the small-time
local controllability is valid when dim M = 1 and local controllability in a large enough time holds
when dim M > 2.

1.2. Statement of the result. The control properties of the KdV equations have been intensively
studied previously but the following natural question remains open (see [23, Open problem 10],

[18, Remark 1.7]):
Open problem 1.1. Is system (1.1)) and (1.2)) small-time locally controllable for all L € N'?
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In this paper we give a negative answer to this question. We show that system (|1.1]) and (|1.2))
is not small-time locally controllable for a class of critical lengths. More precisely, we have

Theorem 1.2. Let k, I € N, be such that 2k 4+ 1 ¢ 3N,. Assume that

[k2 + Kkl + 12
L =921 %

Then system and is not small-time locally null-controllable with controls in H' and
initial and final datum in H>(0, L) N H(0, L), i.e., there exist To > 0 and g9 > 0 such that, for all
§ >0, there is yo € H*(0,L) N Hy(0, L) with [|yo|l g3 0,y < & such that for all u € H'(0,Tp) with
1wl 1 0,1) < €0 and u(0) = yo(L), we have

y(T07 ) $é 07
where y € C([O,Tg];H3(0,L)) N Lz([O,TO];H4(O,L)) is the unique solution of (1.1) and (1.2]).

Open problem 1.3. We are not able to establish that the control system and 18 not
small-time locally controllable with initial and final datum in L*(0, L) and control in L*(0,T) for
a critical length as in Theorem [1.3 It would be interesting to extend the method in the paper to
deal with this problem. It would be also interesting to know what is the smallest s such that system
(1.1) and is not small-time locally controllable with controls in H*(0,T'), and initial and final
datum in D(A%), A being defined in Lemma below.

Remark 1.4. Concerning Open problem may be the smallest s is not an integer, as in the
nonlinear parabolic equation studied in [8], a phenomenon which is specific to the infinite dimension
as shown in [7]. Note that in [32] a non integer s already appears for an obstruction to small-time
local controllability; however it is not known if this s is the optimal one.

Open problem 1.5. It would be also interesting to know what is the optimal time for the local
null controllability. In particular one may ask if T < T, with T> defined in [20, p. 463], then the
control system and is not locally null controllable in time T (for example with initial
and final datum in H3(0,L) N HE(0,L) and control in H*(0,T)) for critical lengths L as in the
above theorem.

Open problem 1.6. Finally, it would be interesting to know if the assumption 2k + 1 & 3N, can
be replaced by the weaker assumption dim M > 1. In other words, is it true that the control system
(1.1) and (1.2) is not small time locally controllable when dim M > 17

In Theorem [1.2) we deal with controls in H'(0,7p), and initial and final datum in H3(0,L) N
HZ(0, L) instead of controls in L?(0,7p), and initial and final datum in L?(0, L) as considered in
[38, 24, 18, 20]. For a subclass of the critical lengths considered in Theorem we prove later
(see Theorem in Section [6)) that system and is locally controllable with initial and
final datum in H3(0, L) N Hy (0, L) and controls in H'(0,T). It is worth noting that even though
the propagation speed of the KdV equation is infinite, some time is needed to reach the zero state.

We emphasize that there are other types of boundary controls for the KdV equations for which
there is no critical length, see [38, 39, 28| [19]. There are also results on internal controllability for
the KdV equations, see [42], [17] and references therein.

A minimal time of the null-controllability is also required for some linear partial differential
equations. This is obviously the case for equations with a finite speed of propagation, such as the
transport equation [22, Theorem. 2.6], or the wave equation [3| [I6], or hyperbolic systems [25].
But this can also happen for equations with infinite speed of propagation, such as some parabolic
systems [2, [IT], Grushin-type equations [9], 4, 26], Kolmogorov-type equations [5] or parabolic-
transport coupled systems [0], and the references therein. Nevertheless, a minimal time required
for the KdV equations using boundary controls is observed and established for the first time in
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this work to our knowledge. This fact is surprising when compared with known results on internal
controls for KdV system with u = 0. It is known, see [17), [37, [36], that the KdV system
with v = 0 is local controllable using internal controls whenever the control region contains an
arbitrary open subset of (0, L).

However our obstruction to small-time local controllability of our KdV control system is of a
different nature than these obstructions to small-time null controllability for linear partial dif-
ferential equations. It comes from a phenomena which already appears in finite dimension for
nonlinear control systems. Note that in finite dimension, in contrast to the case of partial differ-
ential equations as just pointed above, a linear control system which is controllable in large time
is controllable in arbitrary small time. This is no longer the case for nonlinear control systems in
finite dimension: There are nonlinear control systems in finite dimension which are locally con-
trollable in large enough time but are not locally controllable in small time. A typical example is
the control system

(1.5) U1=u, Y2 =1Y3, Y3=—Y2+2y1u,

where the state is (y1,v2,%3)" € R3 and the control is u € R. There are many powerful necessary
conditions for small-time local controllability of nonlinear control systems in finite dimension. Let
us mention in particular the Sussmann condition [43, Proposition 6.3]. See also [7] by Beauchard
and Marbach for further results, in particular for controls in the Sobolev spaces H*(0,T), and
a different approach. The Sussmann condition [43, Proposition 6.3] tells us that the nonlinear
control system is not small-time locally controllable (see [22] Example 3.38]): it gives a
precise direction, given by an explicit iterated Lie bracket, in which one cannot move in small
time. For partial differential equations iterated Lie brackets can sometimes be defined, at least
heuristically, for interior controls but are not well understood for boundary controls (see [22,
Chapter 5]), which is the type of controls considered here. However, for the simple control system
, an obstruction to small-time local controllability can be obtained by pointing out that if
(y,u) : [0,T] — R3 x R is a trajectory of the control system such that y(0) = 0, then

T
(1.6) w(T) = [ cos(T — i) at,
0

T
(1.7) n(T) = (TP = [ sin(T ~ (o) dr

0
Hence,
(1.8) yo(T) > 0if T € [0, 7/2]
(1.9) y3(T) <0if T € [0,7] and y1(T) =0,

which also show that the control system is not small-time locally controllable and more
precisely, using , is not locally controllable in time 7" € [0, 7] ((1.8)) gives only an obstruction
for T € [0,7/2]). Note that condition , at least for 7' > 0 small enough, is the obstruction
to small-time local controllability given by [43, Proposition 6.3], while is not related to this
proposition. For the control system one knows that it is locally controllable in a large enough
time and the optimal time for local controllability is also known: this control system is locally
controllable in time 7T if and only if T" > 7; see [22, Example 6.4]. Moreover, if there are higher
order perturbations (with respect to the weight (r1,r2,73) = (1,2,2) for the state and 1 for the
control; see [22, Section 12.3]) one can still get an obstruction to small-time local controllability

by pointing out that (1.6) and (1.7)) respectively imply
(1.10) for every T' € (0,7/2) there exists § > 0 such that y2(T") > 5|u]§{_1(07T),

(1.11) for every T € (0, 7] there exists > 0 such that if y;(7') = 0, then y3(7") < —5|u\?{_2(07T).
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Assertion ([1.11]) follows from the following facts:

/OT</0ty1(8)ds)2dt§ /()Tt/oty1(8)2dsdtST/OT(T—S)yl(S)QdS’

T , T 9 T
/ (/ y(s) ds) dt < / (T — s)y(s)? ds,
0 t 0
and, since y; = u and y;(0) =0,

ol aomy <0 [ ([ woras) ar v o [ ntsas)”
' 0 0 0

Note that inequality does not require any condition on the control, while (1.11]) requires
that the control is such that y;(7") = 0. On the other hand it is which gives the largest time
for the obstruction to local controllability in time T (1.10]) gives an obstruction for T' € [0, 7/2),
while (1.11)) gives an obstruction for T' € [0, ], which in fact optimal as mentioned above.

There are nonlinear partial differential equations where related inequalities giving an obstruc-
tion to small-time local controllability were already proved, namely nonlinear Schréodinger control
systems considered by Coron in [2I] and by Beauchard and Morancey in [I0], a viscous Burg-
ers equation considered by Marbach in [32], and a nonlinear parabolic equation considered by
Beauchard and Marbach in [§]. Our obstruction to small-time local controllability is also in the
same spirit (see in particular Corollary . Let us briefly explain some of the main ingredients
of these previous works.

e In [21] and [10], the control is interior and one can compute, at least formally, the iterated
Lie bracket [43] in which one could not move in small time (see [22], Section 9.3.1]) if the
control systems were in finite dimension. Then one checks by suitable computations that
it is indeed not possible to move in small time in this direction by proving an inequality
analogous to ([L.11). The computations are rather explicit due to the fact that the driftE|
of the linearized control system is skew-adjoint with explicit and simple eigenvalues and
eigenfunctions.

e In [32] the control is again interior. However the iterated Lie bracket [43] in the direction
of which one could not move in small time turns out to be 0. Hence it does not produce
any obstruction to small-time local controllability. However an inequality analogous to
is proved, but with a fractional (non integer) Sobolev norm. An important tool of
the proof is a change of time-scale which allows to do an expansion with respect to a new
parameter. In the framework of , this leads to a boundary layer which is analyzed
thanks to the maximum principle. Here the drift term of the linearized control system is
self-adjoint with explicit and simple eigenvalues and eigenfunctions.

e In [§] the control is again an interior control. Two cases are considered, a case [§8, Theorem
3] related to [21] and [10] (already analyzed above) and a case [8, Theorem 4] where classical
obstructions relying on iterated Lie brackets fail. Concerning [8, Theorem 4] the proof relies
on an inequality of type . The proof of the inequality of type (1.11)) can be performed
by explicit computations due to some special structure of the quadratic form one wants
to analyze: roughly speaking it corresponds to the case (see [8, (4.17)]) where below
would be replaced by

(1.12) /O ’ /O Lyt ) Poa(@)e— P dt da = /R W(2)a(2) /0 " Blew)drds,

which simplifies the analysis the left hand side of (1.12]) (in (3.6) one has 4(z)u(z — p)
instead of u(z)4(z)). The computations are also simplified by the fact that the drift

1f the linearized control system is written in the form y = Ay + Bu, the drift term is the map y — Ay
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term of the linearized control system is self-adjoint with, again, explicit eigenvalues and
eigenfunctions.

In this article we prove an estimate of type , instead of , expecting that with more
precise estimates one might get the optimal time for local controllability as for the control system
(1.5). The main differences of our study compare with those of these previous articles are the
following ones.

e This is the first case dealing with boundary controls. In our case one does not know what
are the iterated Lie brackets even heuristically. Let us take this opportunity to point out
that, even if they are expected to not leave in the state space (see [22 pages 181-182]),
that would be very interesting to understand what are these iterated Lie brackets.

e It sounds difficult to perform the change of time-scale introduced in [32] in our situation.
Indeed this change will also lead to a boundary layer. However one can no longer use the
maximum principle to study this boundary layer. Moreover if the change of time-scale,
if justified, allows simpler computationsEL the advantage for not using it might be to get
better or more explicit time for the obstruction to small-time local controllability.

e The linear drift term of the linearized control system (i.e. the operator A defined in Lemma
is neither self-adjoint nor skew-adjoint. Moreover its eigenvalues and eigenfunctions
are not explicit.

e Finally, (1.12) does not hold.

1.3. Ideas of the analysis. Our approach is inspired by the power series expansion method
introduced by Coron and Crépeau [24]. The idea of this method is to search/understand a control
u of the form

u:5u1—|—52uQ+~-
The corresponding solution then formally has the form

y=ey+eiya+-o-,
and the non-linear term yy, can be written as

Yo = EY1yre + o
One then obtains the following systems

i1t ) + Y12t 2) + Y1a02(t, ) =0 fort € (0,7), z € (0,L),

(1.13) yi(t,z=0)=y(t,z =L)=0 for t € (0,7),
y1,2(t,x = L) = u(t) for t € (0,7T),
Y2.6(t, @) + Y226, ) + Y2022 (t, ) + y1 (8, 2)y12(t,2) =0 for t € (0,T), z € (0, L),
(1.14) yo(t,z =0) =ya(t,z =L) =0 for t € (0,7),
yo.(t,x = L) = ua(t) for t € (0, 7).

The idea in [I8,20] with its root in [24] is then to find u; and ug such that, if y1(0,-) = y2(0,-) =0,
then y1(T,-) = 0 and the L?(0, L)-orthogonal projection of y2(T) on M is a given (non-zero)
element in M. In [24], the authors needed to make an expansion up to the order 3 since y, belongs
to the orthogonal space of M in this case. To this end, in [24] 18 20], the authors used delicate
contradiction arguments to capture the structure of the KdV systems.

The analysis in this paper has the same root as the ones mentioned above. Nevertheless, instead
of using a contradiction argument, our strategy is to characterize all possible u; which steers 0 at
time 0 to 0 at time T (see Proposition . This is done by taking the Fourier transform with

2This is in particular due to the fact that for the limit problem one has again (1.12))
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respect to time of the solution y; and applying Paley-Wiener’s theorem. Surprisingly, in the case
2k +1 # 3N,, if the time T is sufficiently small, there are directions in M which cannot be reached
via yo (see Corollary and Lemma . This is one of the crucial observations in this paper.
Using this observation, we then implement a method to prove the obstruction for the small-time
local null-controllability of the KdV system, see Theorem The idea is to bring the nonlinear
context to the one, based on the power series expansion approach, where the new phenomenon is
observed (the context of Corollary . To be able to reach the result as stated in Theorem (1.2
we establish several new estimates for the linear and nonlinear KdV systems using low regularity
data (see Section for the linear and Lemma for the nonlinear settings). Their proofs partly
involve a connection between the linear KdV equation and the linear KdV-Burgers equation as
previously used by Bona et al. [13] and inspired by the work of Bourgain [14], and Molinet and
Ribaud [34]. To establish the local controllability for a subclass of critical lengths in a finite time
(Theorem , we apply again the power series method and use a fixed point argument. The key
point here is first to obtain controls in H'(0,T) to control directions which can be reached via
the linearized system and second to obtain controls in H'(0,7') for y; and yo mentioned above.
The analysis of the first part is based on a modification of the Hilbert Uniqueness Method and
the analysis of the second part is again based on the information obtained in Corollary and
Lemma Our fixed point argument is inspired by [24], 18] but is different, somehow simpler,
and, more importantly, relies on the usual Banach fixed point theorem instead of the Brouwer
fixed point theorem, which might be interesting to handle nonlinear partial differential equations
such that M is of infinite dimension, as, for example, in [32].

1.4. Structure of the paper. The paper is organized as follows. Section[2]is devoted to the study
of controls which steers 0 to 0 (motivated by the system of y1). In Section |3, we study attainable
directions for small time via the power series approach (motivated by the system of y5). The main
result in this section is Proposition whose consequence (Corollary is crucial in the proof
of Theorem In Section [4] we established several useful estimates for linear KdV systems. In
Section [b| we give the proof of Theorem In fact, we will establish a result (Theorem ,
which implies Theorem and reveals a connection with unreachable directions via the power
series expansion method. In Section [6] we establish the local controllability for the nonlinear KdV
system with initial and final datum in H3(0, L) N H}(0, L) and controls in H'(0,1) for some
critical lengths (Theorem . In the appendix, we establish various results used in Sections
to [l

2. PROPERTIES OF CONTROLS STEERING 0 AT TIME 0 TO 0 AT TIME T

In this section, we characterize the controls that steer 0 to 0 for the linearized KdV system at a
given time. This is done by considering the Fourier transform in the ¢-variable and these conditions
are written in terms of Paley-Wiener’s conditions. The resolvent of 9349, hence naturally appears
during this analysis. We begin with the discrete property on the spectrum of this operator.

Lemma 2.1. Set D(A) = {v € H3(0,L),v(0) = v(L) = v'(L) = O} and let A be the unbounded

operator on L?(0, L) with domain D(A) and defined by Av = v" +v' for v € D(A). The spectrum
of A is discrete.

Proof. Since A is closed, we only have to prove that there exists a discrete set D C C such that
for 2 € C\ D and for f € L?(0, L), there exists a unique solution v € H3(0, L) of the system

{ V" + v +zv=fin (0,L),

(2.1)
v(0) =v(L) =v'(L) = 0.
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Step 1: An auziliary shooting problem. For each z € C, let U, € C3(R; C) be the unique solution
of the Cauchy problem

(2.2) Uil + Uy + 20Uy =0in (0,L), U(,y(L) =Ug (L) =0, UL(L)=1.

Let §: C — C be defined by 6(2) = U;)(0). Then 6 is an entire function. We claim that this
function does not vanish identically, and D := 671(0) is therefore a discrete set. Indeed, let us
assume that U;)(0) = 6(1) = 0. Multiplying with z = 1 (the equation of U(y)) by the (real)
function U(;) and integrating by parts on [0, L], one gets

1 L
(2.3) 5U(’l)(o)2 + /0 Ufy(z) de =0,
which implies U(;) = 0 in [0, L]. This is in contradiction with U(1)( ) =1.

Step 2: Uniqueness. Let z ¢ D, ie., 0(z) = U)(0) # 0. Assume that vi,v2 € H*(0,L) are
two solutions of (2.1). Set U = vy —vo. Then U” + U’ + 2U = 0 and U(L) = U'(L) = 0. It
follows that U = U"(L)U,.y in [0, L]. So, U(0) = U"(L)U,)(0) = U"(L)8(z). Since 0(z) # 0 and
U(0) = v1(0) — v2(0) = 0, we conclude that U”(L) = 0. Hence U = 0 in [0, L], which implies the
uniqueness.

Step 3: Emistence. Let z ¢ D and f € L*(0,L). Let V € H3(0,L) be the unique solution of the
Cauchy problem
(2.4) V" +V'+ 2V = fin (0,L),

’ V(L) =V'(L)=V"(L) =0.

Set v =V — V(0 )(0( ))'U(.) in [0, L]. Then v belongs to H*(0, L) and satisfies the differential

"

equation v +v' + zv = f, and the boundary conditions v(L) = 0, v'(L) = 0, and v(0) =
V(0) — V(0) = 0. Thus v is a solution of (2.1]). O

Before characterizing controls steering 0 at time 0 to 0 at time 7', we introduce

Definition 2.2. For z € C, let (\j)1<j<3 = (A(2))
multiplicity of

1<j<3 be the three solutions repeated with the

(2.5) N4+ A+iz=0.
Set
3 1 1 1
(2.6) Q= Q(Z) — Z()‘j-i-l _ /\j)e)\jL+>\j+1L — eML el ersl ’
7j=1 )\1€>\1L )\2€>\2L )\36>\3L
3 1 1 1
(2.7) Z Aj(e erit2l J“L) =det [ eML erl Ml ]
=1 A A A3
and
1 1 1
(2.8) == E(Z) = —()\2 - /\1)()\3 — )\2)(/\1 — )\3) =det [ A1 Ao A3 |,
AN N

with the convention \jy3 = \; for j > 1.
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Remark 2.3. The matrix ) and the quantities P and = are antisymmetric with respect to A;
(j = 1,2,3), and their definitions depend on a choice of the order of (A1, A2, A3). Nevertheless,
we later consider a product of either P, Z, or det Q with another antisymmetric function of (),

or deal with |det @|, and these quantities therefore make sense (see e.g. (2.11)), (2.12))). The
definitions of P, =, and @) are only understood in these contexts.

In what follows, for an appropriate function v defined on Ry x (0, L), we extend v by 0 on
R_ x (0, L) and we denote by v its Fourier transform with respect to ¢, i.e., for z € C,

I :
0(z,7) = — v(t, z)e "t dt.
)= o= [ o)
We have

Lemma 2.4. Let u € L*(0,400) and let y € C([0, +00); L*(0, L)) NLE ([0, +00); HY(0, L)) be the
unique solution of

yr(t, ) + yu(t, ) + Yaza (t,2) =0 in (0,400) x (0, L),

(2.9) y(t,r=0)=y(t,x=L)=0 in (0, 400),

Yz (t,x = L) = u(t) in (0, 400),
with
(2.10) y(t=0,-)=01n (0,L).
Then, outside of a discrete set z € R, we have

.3
(2.11) J(z,x) = de%:Q Z(e’\j”L — N eNT for e € (0,L),
j=1
and in particular,
. u(z)P(z)

2.12 0ii(2,0) = ——L =
(212) (20 = S

Remark 2.5. Assume that (z,-) is well-defined for z € C (e.g. when u has a compact support).
Then the conclusions of Lemma hold outside of a discrete set z € C.

Proof. From the system of y, we have
129(2,2) + U2 (2, ) + Yzaa(z,2) =0 in R x (0, L),
(2.13) J(z,x=0)=9g(z,z=L)=0 in R,
Uu(z,2 = L) =10(2) in R.

Taking into account the equation of ¢, we search the solution of the form

3
Z)(zv ) = Z aje)\ja;7
s

where \; = \;(z) with j =1,2,3 are defined in Definition

According to the theory of ordinary differential equations with constant coefficients, this is
possible if the equation A3 + A 4+ iz = 0 has three distinct solutions, i.e., if the discriminant
—4 + 2722 is not 0. Moreover, if —iz ¢ Sp(A), this solution is unique. Thus, by Lemma
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outside a discrete set in R, §(z, -) can be written in this form in a unique way. Using the boundary
conditions for ¢, we require that

22—1 aj =0,
Z;’ LeMta; =0,
ijl Nedita; = .
This implies, with @ = Q(z) defined in Definition
(2.14) Q(a1,az,a3)" = (0,0,4)T.
It follows that

L — L Njta2L _ X1l
aj det Q (6 (& )
This yields

3
(215) yA( , det Z j+2L e J+1L)6)\]':£
We thus obtain
) i(z)P(2)
2.1 :0(2,0) = ————. O
(2.16) 0:9(2,0) = § 50

As mentioned in Remark the maps P and det () are antisymmetric functions with respect
to Aj. It is hence convenient to consider 0,%(z,0) under the form

(2.17) 9:9(2,0) = u(z}}((i%z)

where, with Z defined in ,
(2.18) G(z) = P(2)/2(z) and H(z)=detQ(z)/E(z).
Concerning the functions G and H, we have

Lemma 2.6. The functions G and H defined in (2.18) are entire functions.

Proof. Note that the maps z + Z(2)P(z), z — Z(z) det Q(z) and z + Z(2)? are symmetric func-
tions of the A; and are thus well-defined, and even entire functions (see Lemma in Appendix|[A]).
According to the definition of =, Z(z) = 0 if and only if X3 + X + izy has a double root, i.e.
20 = +2/(3v/3). Simple computations prove that when ¢ is small,

VFi

Al(zo—i-e)::F\if YEVE+06),
(2.19) Ao +6) = T — YE 24 0(0),

\/g 31/4

21 €
A =+ + - +0(?).
| 3(ZO+€) \/§+3+ (6)

Indeed, the behavior of A3 follows immediately from the expansion of A3 near j:%. The behavior
of A1 and Ay can be then verified using, with A = —3)\§ —4

Mt VA
Mo VA
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It follows that that Z2(zp + ¢) = cxe + O(e?) for some cx # 0. This in turn implies that 2o =
+2/(3v/3) are simple zeros of Z2. When X3 + X + iz has a double root, the definitions of P and
det @ (Eq. (2.6) and (2.7)) imply

|P(20)] = |det Q(z0)| = 0 for zo = £2/(3V/3).
The conclusion follows. ([l

Remark 2.7. It is interesting to note that
(1) (H(z) =0 and z # £2/(3v/3)) if and only if —iz € Sp(A).
(2) iz € Sp(A) and z is real if and only if L = 2%@, and

(2k + 1)(k — 1)(2 + k)

2.20 - ,
(2.20) T T 3VBRE 1 KL+ 12)32

for some k,l € Nwith 1 <[ <k.

Indeed, if L = 2%\/% and z is given by the RHS of (2.20)), then, from [38], iz € Sp(.A). On
the other hand, if z is real and iz € Sp(A), then, by an integration by parts, the corresponding
eigenfunction w also satisfies the condition w,(0) = 0. It follows from [38] that L = 2,/ W

and z is given by (2.20) for some k,l € N with 1 <1 < k. We finally note that for z # +2/(3v/3),
the solutions of the ordinary differential equation u” + u' + izu = 0 are of the form u(z) =

Z?Zl a;je*®. This implies that Q(a1,as,a3)T = (0,0,0)7 if w(0) = u(L) = «/(L) = 0. Therefore,
for z # 4+2/(3v/3), —iz is an eigenvalue of A if and only if |det Q(z)| = 0, i.e., H(z) = 0. We
finally note that, +2i/(3+/3) is not a pure imaginary eigenvalue of A since, for k > 1> 1,

_ @E+D(k -2+ k) (2k + 1)(k? + ki — 21%) (2k + 1) 2

< .
3VB(E2 + kl+12)32 332+ kl+12)3/2  3v3(k2 + kl+12)1/2 " 33

We are ready to give the characterization of the controls steering 0 to 0, which is the starting
point of our analysis.

Proposition 2.8. Let L > 0, T > 0, and u € L?(0,+00). Assume that u has a compact support
in [0,T], and u steers 0 at the time 0 to 0 at the time T, i.e., the unique solution y of and
(2.10) satisfies y(T,-) =0 in (0,L). Then @ and uG/H satisfy the assumptions of Paley-Wiener’s
theorem concerning the support in [—-T,T], i.e.,

@ and WG /H are entire functions,

and

for some positive constant C.

Here and in what follows, for a complex number z, R(z), S(2), and z denote the real part, the
imaginary part, and the conjugate of z, respectively.

Proof. Proposition is a consequence of Lemma and Paley-Wiener’s theorem, see e.g. [41],
19.3 Theorem]|. The proof is clear from the analysis above in this section and left to the reader. O
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3. ATTAINABLE DIRECTIONS FOR SMALL TIME

In this section, we investigate controls which steer the linear KdV equation from 0 to 0 in some
time 7', and a quantity related to the quadratic order in the power expansion of the nonlinear KdV
equation behaves. Let u € L%(0,400) and denote y the corresponding solution of the linear KAV
equation (2.9). We assume the initial condition to be 0 and that y satisfies y(¢,-) = 0 in (0, L) for
t > T. We have, by Lemma (and also Remark , for z € C outside a discrete set,

Z?:l(eAjJrlL _ e}\jL)e/\j+2x
S0 (N1 = Ag)edavzl
Recall that A\; = Aj(z) for j = 1, 2, 3 are the three solutions of the equation

(3.1) §(z,2) = a(z)

(3.2) 23+ x = —iz for z € C.
Let n1, m2, n3 € iR, ie., n; € C with R(n;) =0 for j =1, 2, 3. Define
3
(33) p(x) = 3 (41 — )2 for x € [0, L],
j=1

with the convention 7;43 = n; for j > 1. The following assumption on 7; is used repeatedly
throughout the paper:

(3.4) ML — gml _ gmsl

which is equivalent to 3 — 2,2 — 11 € ?Z. The definition of ¢ in and the assumption on
nj in are motivated by the structure of M [I8, 20] and will be clear in Section [5|
We have

Lemma 3.1. Let p € R and let ¢ be defined by (3.3). Set, for (z,z) € C x [0, L],
Zizl(eAjHL — eNib)ehivan Zizl(eij+1L _ erL)€Xj+2:p

S0 (Mg = Aje A2k | i g1 — Aj)e el o)

where Xj = X](z) G =1,2,3) denotes the conjugate of the roots of with z replaced by
z — p and with the use of convention \ji3 = A; for j > 1. Let u € L?(0,4+00) and let y €
C([0,+00); L*(0, L)) N LE ([0, +00); H'(0, L)) be the unique solution of and (2.10). Then

(3.6) /0 : /O T () oo ()P dt die = / W)z =p) /0 " Ble.x) deds.

R
Remark 3.2. The LHS of is a multiple of the L%(0, L)-projection of the solution %(T),-) into
the space spanned by the conjugate of the vector p(x)e~#T whose real and imaginary parts are in
M for appropriate choices of n; and p when the initial data is orthogonal to M (see [24} 18, 20],
and also ([5.18)).

Proof. We have

L oo ‘ L . L R
/ / ly(t, 2) 2o (@) P dt de =v/2m / o (@) (p,0) dx = / ()i * Tp, ) da
0 0 0 0

(3.5) B(z,x) =

- /0 " oela) /R 3 2)5(p — 2,) dz d

:/OL gox(:c)/Rg)(z,x)g)(zp,x) dz dz.
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Using Fubini’s theorem, we derive from (3.1]) that

L
/ / y(t, z)>ou(x)e _”’tdtdx:/ﬁ(z)ﬁ(z—p)/ B(z,z)dx dz,
R 0
which is (3.6). O

We next state the behaviors of \; and Xj given in Lemmam for “large positive” z, which will
be used repeatedly in this section and Section [} These asymptotics are direct consequence of the
equation ([2.5)) satisfied by the A;.

Lemma 3.3. For p € R and z in a small enough conic neighborhood of Ry, let \; and Xj with
j=1,2,3 be given in Lemma [3.1 Consider the convention R(A1) < R(A2) < R(A3) and similarly
for Xj. We have, in the limit |z| — oo,

1 . g
(3.7) A= P = TR O with iy = eI,

J

~ 1 _ ‘ .

(3.8) A= = o O with iy = €O

Hj
(see Figure for the geometry of u; and pj). Here 213 denotes the cube root of z with the real
part positive.

[ I3 FIGURE 1. The roots \; of A3 +
A+ iz = 0 satisfy, when z > 0 is
large, A\; ~ ujzl/3 where u? = —i
When z < 0 and |z| is large, then
the corresponding roots 5\]- satisfy
H1 U3 5\]' ~ ﬁj\z|1/3 with ﬁj = VJ We
also have Xj ~ S\j.

We are ready to establish the behavior of

/0 " Blex)dr

for z € R with large |z|, which is one of the main ingredients for the analysis in this section.

Lemma 3.4. Let p € R, and let ¢ be defined by (3.3)). Assume that (3.4) holds and n; # 0 for
j=1,2, 3. Let B be defined by . We have

(3.9) / B(z,x)dx =
where E is defined by

E ‘4/3 + O(|2|7%®) for z € R with large |z|,

3
1 2 Nj+1 — Ny
(3.10) E=2(emt = 1) | =35> e —m) ZPZ s
= = Mj+2
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Proof. We first deal with the case where z is positive and large. We use the convention in Lemma
for A\j and \;. Consider the denumerator of B(z,z). We have, by Lemma
1 1

YA — Ag)eAivel S (N1 — Xj)e A2l

(3.11)

ML eXlL

s — ) - )
We next deal with the numerator of B(z,x). Set, for (z,2) € R x (0,L),

(o)

3 3

(3.12) flz,z) = Z(GAHIL — Ny gz x) = Z(e)‘j“L — eNibyerirar,
j=1 j=1
B
fm(27x) — _6)\3L6)\25L‘ + e)\QLe)\gx + 6)\3L€)\1I’ gm(27$) — —€X3L€X2x + eXQLex?,I + QXSLGXII.

We have
L L L
/ F(z2)9(2, 2)pu (@) da = / Fon(2s @) g (21 )0 (&) dt + / (F = ) (2, 2)gm (2 )0 () d
0 0 0

L L
n /0 Fonl(222)(9 — gom) (22 2) () it + /0 (f = ) (2229 — gm) (22 2) () .

It is clear from Lemma [B.3] that
L

L
(3.13) /0 !(f—fm)(z,iv)gm(z,w)sox(w)\df“r/0 (f = fm)(z,2)(g — gm) (2, ¥)0u(z)| dx

L ~
* / | (2, 2)(9 = gm) (2, ) e ()| d < ClePs )L e=CRIY?,
0

We next estimate

(3.14) / (@, 2)gm(z, 2) oz (x / fm(x, 2)gm (2, 2) Zan (Nj+1 — n;)eh+2® | du.
We first have, by (3.4) and Lemma

L - I I
(3.15) / (_ MsLhar ML dse _ oL odsz AsLodow | eAQLe,\gme,\QLe,\g,z)

0

3

an+2(77j+1 — ;)€ | da = ePat+Xa+ra+22) L (emLTl(z) + O(G—CIZWS)),
j=1
where
3
1 1 1
(3.16)  Ti(z) :== ) njt2(njt1 —n5) = - = - = -
]z::l A3+ A3+ A3+ A +njpe Ao+ A3+ 140

3The index m stands the main part.
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Let us now deal with the terms of (3.14) that contain both MLl angd (either eM? or ex”“").
We obtain, by (3.4) and Lemma

L I - - -
(3.17) / (€A3Lez\1xez\3Le>\1x _ Lz AL e _ 6A3L6>\2x6>\3L€)\1x>
0

3 ~
x| D mire(nn = m)e 2 | do = X (Ty(2) 4+ O,
Jj=1

where

5 1 1 1
(3.18)  Ta(z):= > mjralnjr —nj) (- + + ) :

=1 A1+ X1 +njr2 A+ X2 +njr2 Ao+ X1 + Nj+2

We have, by (3.4),

L ~ - 3 ~
(3.19) /o el medslea™ | N o (njpa — my)et T | da = P3P (2),
=1
where
3
(3.20) Ty(z) = <€A2L+X2L+mL _ 1) 4241 = 1)

= Ao + XQ + Nj+2
The other terms of (3.14]) are negligible, because we have

L ~ - o 3
(3.21) /0 <6A3L6A1x6A2L6A3x + eAZLexsxestem) (Z N2 (41 — nj)enjm) du
7=1

_ |6(A3+X3)L|O(670z1/3)'
Using Lemma (3.3 we have
A4 AL+ Ao+ Ao+ A3+ Az = O(z71/3),
(3.22) AL+ AL+ As + Ay = O(z1/3),
(A3 — M)Az — Ag) = 322/3(1 + O(z71/3)).
We claim that
(3.23) IT1(2)| + |T2(2)| + |T3(2)| = O(2~%3) for large positive z.
Assuming (3.23)), and combining (3.11)), (3.15)), (3.17), (3.19), (3-21), and yields

L
(3.24) /O Bz, x)dz = 3|Z1|2 (M) + To2) + To(2) + 0GT)),

We next derive the asymptotic behaviors of T1(z), T2(z), and T3(z), which in particular imply
(3.23]). We first deal with 71(z) given in (3.16)). Since

3

(3.25) > njra(njs —m;) =0,
j=1
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we obtain

> 1 1
Ti(z) =) njra(nje1 — 15) = - =

= A3+ A3 +mj42 A3+ A3

3
1 1
+ > njra(njt1 —ny) <— < + = )

j=1 )\3 + )\2 + 742 )\3 + )\2

3
1 1
+ > njv2(njr1 — 1) <— N + N ) :

= A2+ A3 +njp2 A2+ A3
Using Lemma we get
> 1 1 1
Ti(z) = —;nﬁa(mﬂ — 1) (()\3 N Xs)Q - O +X2)2 — Cot X3)2> +0(z7h).
Moreover, we derive from Lemma that
1 1 1
Ms+23)?  (As+22)2  (Ag+ hg)?

= 22 ((g o+ Jig) 2 = (s + i) 2 = (2 + Jia) ) + O(=7)

_ 23 (1 C—14V3 -1 Z\B) Lo

3 6 6

2
(3.26) = gz_z/?’ +0(z7h).
We derive that
3
2 _ _
(3.27) Ti(z) = —32 N e (njrn —my) + O,
j=1
We next consider Th(z) given in (3.18). We have, by (3.25)),
> 1
Tr(z) = Ni+2(j+r —m5) | — ~
jz; ! ! ! /\1+)\1+77j+2 AL+ A

3
1
+ Z Nj+2(Nj+1 — 1j) (

j=1 )\1 + )\2 + 142 )\1 + )\2

j=1 )\2 + )\1 + 142 )\2 + )\1
Using Lemma we obtain

+> njra(nj —nj) ( ! )

L, 1 1
Tr(2) = Zﬁj+2(77j+1 — 1) ~ 5 =

= (M + )\1)2 (M + )\2) (A2 + )\1

and
1 _ 1 _ 1
(A1 + X1)2 (A + X2)2 (A2 + Xl)2

= z72/3 ((ul + i) " = (a4 2) 2 — (2 -HNH)*Z) +0(z7).
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By Lemma |3.3] we have
(1 + ) = (p3 + fiz)? (i1 + fi2)* = (i3 + p2)? (i + p2)? = (3 + fiz)*.
Combining this with (3.26]), we then have

2

3
(3.28) To(2) = 327°% D njia(mier — ) + O(=7").
i=1

We finally consider T5(z) given in (3.20). We have, by (2.5)),
A3+ A3 4+ Ao+ XNy = —iz +i(z — p) = —ip.
This yields
Ao + XQ = —$.
A+ A2+ Ao

From Lemma [3.3] we have
Ao+ do = ipz 23 4 O(z7Y).
It follows that

j=1 A2 + XQ + Nj+2 j=1 ’ipZ_2/3 + Nj+2

3 o —2/3
=> "1 — ) (1 - ) +0(l2[™)

Mj+2

"2 (41— 15) o= M2 (0 — 1))
j+2\15+1 3] _ j+2\15+1 J +O(|Z|71)

3
(3.29) =—ipy_ Mt 705 =2/ 4 o).
= Nj+2

We derive from (3.29) and Lemma |3.3| that

3
(3.30) Ty = —ip(emL - 1) N LTI 2 0.

= 2

Using (3.27)), (3.28), and (3.30]), we derive from (3.24)) that
L
/ B(z,z)de = Ez~43 4+ 0(z7%/3),
0

which is the conclusion for large positive z.

The conclusion in the case where z is large and negative can be derived from the case where z
is positive and large as follows. Define, for (z,z) € R x (0, L), with large |z,

Z?:l (6)\]'+1L _ e}\jL)eA]'+2$

M(z,z) = .
S (N1 — Aj)e Aozt

Then
B(Z, ‘/E) = M(Z’ :E)M(Z - D x)gox(ﬂ:)
It is clear from the definition of M that
M(—z,x) = M(z,x).

We then have
B(—z,x) = M(—z,2)M(—z — p,x)pz(x) = M(z,2)M(z + p, x) p.(x).
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We thus obtain the result in the case where z is negative and large by taking the conjugate of the
corresponding expression for large positive z in which n; and p are replaced by —n; and —p. The
conclusion follows. O

As a consequence of Lemmas and we obtain
Lemma 3.5. Let p € R and let ¢ be defined by (3.3). Assume that (3.4) holds and n; # 0 for
j=1,2,3. Let u € L*(0,400) and let y € C([0,+00); L*(0,L)) N LE ([0, 400); H(0,L)) be the
unique solution of (2.9) and (2.10). We have

(3.31) /Om /OL\y(t,x)]ZQ%(m)e_iptdxdt:/Rﬁ(z)ﬁ(z—p)<|2’E4/3+O(]2\_5/3)>dz.

Using Lemma [3.5] we will establish the following result which is the key ingredient for the
analysis of the non-null-controllability for small time of the KdV system (|1.1)).

Proposition 3.6. Let p € R and let ¢ be defined by (3.3). Assume that (3.4) holds and n; # 0
for j =1,2,3. Let u € L*(0,400) and let y € C([0,+00); L*(0,L)) N LE ([0, +00); H'(0,L)) be

loc

the unique solution of (2.9) and (2.10). Assume thatu # 0, u(t) =0 fort > T, and y(t,-) =0 for
large t. Then, there exists a real number N(u) > 0 such that C7L||u|| g-2/3 < N(u) < C||ul| g-2/3

for some constant C > 1 depending only on L, and
[e§) L )
(3.32) / / ly(t, @) e Plp,(x) do dt = N(u)*(E + O(1)TY4).
0 0
Here we use the following definition, for s < 0 and for u € L?(R.),

luley = [ 131+ )

where 4 is the Fourier transform of the extension of u by 0 for ¢ < 0.
Before giving the proof of Proposition [3.6, we present one of its direct consequences. Denote
&1t 7) = R{p(x)e?} and &(t,z) = S{p(x)e*'}. Then

(3.33) &i(t,x) + ika(t, x) = p(x)e ",
Denote E; = R(E) and Ey = S(F), and set
(3.34) U(t,x) = Er1&(t, x) + Exéa(t, ).

Multiplying (3.32) by E and normalizing appropriately, we have

Corollary 3.7. Let p € R and let ¢ be defined by (3.3)). Assume that (3.4) holds, n; # 0 for
j=1,2,3, and E # 0. There exists T, > 0 such that, for any (real) u € L*(0,+00) with u(t) = 0
fort > T, and y(t,-) = 0 for large t where y is the unique solution of (2.9) and (2.10), we have

o] +o00o 9 9
(3.35) /O /0 V(@) Ut 2) o dt > Cllul s -
We are ready to give the
Proof. [Proof of Proposition By Proposition

4G/ H is an entire function.
By Lemma[2.6] G and H are entire functions. The same holds for @ since u(t) = 0 for large t. One
can show that the number of common roots of G and H in C is finite, see Lemma[B.2]in Appendix [B]

4The map u — N(u) is actually a norm, which is (somewhat) explicitly given in the proof, by N(u)? = |32,
where w is defined in Eq (3.46]).
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Let z1,..., 2z, be the distinct common roots of G and H in C. There exist mq,...,m; € N such
that [} with
k
I'(z) = H(z —z;)™  in C,
j=1
the following two functions are entire
G(z) H(z)
. = d frnd
(3.36) G(2) T(2) H(z) T(s)’

and G and H have no common roots. Since
uG/H = uG/H
which is an entire function, it follows that the function v defined by

(3.37) v(z) =u(z)/H(z) = ﬁ(z)m in C

is also an entire function.
It is clear that

(3.38) (z) = v(2)H(z) in C.
We consider the holomorphic function v restricted to £, := {z € G |R(z)| < em, —((2m +

1)/(\/§L))3 < S(z) < ((2m+ 1)/(\/§L))3} with large m € N. Using Proposition to bound 1,

and Lemma in Appendix [B|to bound (det Q(z))~!, we can bound v on 9L, (and thus also in
the interior of £,,) by

3
(3.39) lv(2)| < Cae(TJrE/Q)((QmH)/(\/gL)) in £

ms
for all £ > 0, since, for large |z|,
=(2)] < Cll.
Note that the constant C. can be chosen independently of m. Here we used the fact
li(z)| < Ce™RE for 2 € C.

On the other hand, applying Lemma [3.3] and item 2 of Lemma we have
(3.40)

0(2)] < Ce™+)Il i {z € C;|R(2)| > em, —((2m+1)/(V3L))* < S(2) < ((2m + 1)/(\/§L))3}.
Combining (3.39)) and (3.40) yields

(3.41) lu(2)| < CeT*+elzlin C.
Since H is a non-constant entire function, there exists v > 0 such that
(3.42) H'(z +ivy) # 0 for all z € R.

Fix such an v and denote H,(z) = H(z + iv) for z € C.
Let us prove some asymptotics for H,. Since Z?Zl Aj =0, it follows from ([2.6) that
det @ = (Mg — A)e 3L + (A3 — Ag)e ™ E 4 (A — A3)e 2L,
We use the convention in Lemma [3.3] Thus, by Lemma for fixed 8 > 0,
det Q(z + i)

i3) = o —2/3=F  my —pu Lzt/3 _1/3

50One can prove that m; =1 for 1 < j <k by Lemmain Appendix but this is not important at this stage.
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where
1

(2 — pa)(p1 — p3)’

We can also compute the asymptotic expansion of H'(z + if3), either by explicitly computing the
asymptotic behavior of )\}(z+i6) for large positive z (formally, one just needs to take the derivative
of with respect to z), or by using the Cauchy integral formula on the contour 0D(z,r) for
some fixed r to justify differentiating Eq. . We get:

K =—

H (2 +ip) = —%z‘”%z%—z?ﬂ mye=mLz' (1 4 057 1/3)).

We then get
lim ’H(Z)|Z|_2/3/1ny(z) — = 3€—i7r/6/L.

z€ER,z—400
Similarly, we obtain
lim  H(z)|2| 723/ (2) = —a.

zER,z——00

Moreover, we have

(3.44) [H(2) |23 — aHL (2)| < CIH(2)||2|7F < C1H,(2)||2] 73 for large positive 2,

and

(3.45) [H(2)2| 7% + aH.(2)] < CIH(2)|]2| 7" < C[H,(2)||2| /3 for large negative z.
Set

(3.46) w(z) = v(2)H.,(2) = a(z)H. (2)H(2) 7

Then w is an entire function and satisfies Paley-Wiener’s conditions for the interval (=7 —¢e,T +

g) for all € > 0, see e.g. [41, 19.3 Theorem|. Indeed, this follows from the facts |w(z)]

C.|v(z)|efl?l for z € C by Lemma lv(z)| < C.elT*olzl for 2 € C by (3.41), [H. (2)v(2)]

| M, (2)H () a(2)| < |a(z)| for real z with large |z[, so that [p]d|* < +oo.
<———forzelR.

We claim thaﬂﬂ
L
B(z. 2)d
|, B EEEE

In fact, this inequality follows from Lemma for large z, and from Lemma in Appendix
otherwise since, for if z is a real solution of the equation H(z) = 0, which is simple by Lemma
it holds, by Lemma again,

A

(3.47) ¢

3
Z(emlL _ eAjL)e/\]-+2z 0.

J=1

From (3.42)), (3.44)), (3.45)), and (3.47), we derive that

L
(3.48) (2)alz = p)/o B(z,5) dz| < Clib(2)|[i(z — p)| for = € R.

6Recall that B was defined in Eq.(3.5)).
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Note that, for m > 1,

|/z|>m a(z)ﬂ(z_p)/oLB(Z,z) drdz — Ea|2/ ()07 — p) dz

|z|>m

L
< / ﬁ(z)d(z—p)(/ B(z,x) daz—E|z\_4/3> dz
|z|>m 0
+ | E| . ‘!a\%(z)ﬁ)(z —p) — [z["Pa(z)a(z - p)| dz.
z|>m
Using (3.44)) (3.45)), and Lemmas and we derive that
e — L e —
/ w(z)u(z —p) / B(z,x)dxdz — Ea\z/ w(z)w(z —p)dz
|z|>m 0 |z|>m
<C | (2) [ (2 — p)||2| /3 dz.

|z|>m

We derive from and - that

/Ra(z)ﬂ(z—p)/oLB(z,x) dxdz—E\aF/w(z)w(z—mdz

R

< C/|Z|<m [w(2)|[d(z — p)| dz + Cm-1/3/| 1(2)[|d(z — p)| dz.

z|>m
Since, for z € R,
[w(2)| < Cllwllpr = Cllwl| g~y < CT2||w| 2wy,

we derive that

/Rﬂ(z)@(z—M/OLB(zjx) drdz — E|a|2/RQD(z)1I)(Z—p)dZ < C/_i (Tm+m_1/3)|w\2.

Using the fact

Aﬁ@mw—mm=é@ﬁﬁ€mﬁ=/imw&%wa

we obtain, by choosing m = 1/T3/4,

L T
u(2)u(z — 2. 2)drdz = Elal? w(t)|? 1/4 .
A()( mABu>dd M|/’uwm+omT>ﬁ

-T

The conclusion follows by noting that

2
[ = [ epazc [ 2O

and by normalizing u such that [a||wl|z2g) = 1.
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4. USEFUL ESTIMATES FOR THE LINEAR KDV EQUATIONS

In this section, we establish several results for the linear KdV equations which will be used in the
proof of Theorem Our study of the inhomogeneous KdV equations is based on three elements.
The first one is on the information of the KdV equations explored previously. The second one is a
connection between the KdV equations and the KdV-Burgers equations, as previously suggested
in [29, 13]. The third one is on estimates for the KdV-Burgers equations with periodic boundary
condition. This section contains two subsections. The first one is on inhomogeneous KdV-Burgers
equations with periodic boundary condition and the second one is on the inhomogeneous KdV
equations.

4.1. On the linear KdV-Burgers equations. In this section, we derive several estimates for
the solutions of the linear KdV-Burgers equations using low regular data information. The main
result of this section is the following result:

Lemma 4.1. Let L > 0 and f; € L'(Ry; L' (0,L)) and fo € L' (Ry; WH(0,L)) be such that

L
(4.1) / filt,x)dx =0 for a.e. t >0,
0
and
(4.2) f2(t,0) = fa(t,L) =0 for a.e. t> 0.

Set f = fi1 + for and assume that f € L (R+;L2(O, L)) Let y be the unique solution in
C([0,+00); L*(0, L)) N LE ([0, +00); HY(0, L)), which is periodic in space, of the system

loc
(4.3) yr(t, ) + 4y, (t, ) + Yawa (6, ) — 3yaa(t, ) = f(t, ) in (0,+00) x (0, L),
and
(4.4) y(t=10,-) =0 in (0,L).

We have, for x € [0, L],

(4.5) ly(s @) 2ry) + 1922 m-178®) < Clf 1@y x(0,1))
and
(4.6) Iy @) 8@y + 192 @) | g-2/3m) + 1Yl 2R s m-10,0)) < CHUL f2) i@y x(0,1)-

Assume that f(t,-) =0 fort >T. We have, for all 6 > 0, and for allt > T + 0,
(4.7) lye(t, )| + [y (t, 2)| < Csl|(f1, f2)llLr @ x(0,)) for x € [0, L].
Here C (resp. Cs) denotes a positive constant depending only on L (resp. L and §).

Remark 4.2. Using the standard energy method, as for the KdV equations, one can prove that
if f e LRy, L2(0,L)) with [[" f(t,2)de = 0 for a.e. ¢ > 0 (this holds by (&1) and (&2)), then
([4.3)-(4.4) has a unique solution in C([0, +00); L*(0, L)) N L2([0, +oc0); H'(0, L)) which is periodic

in space.

In the proof of Lemma we use the following elementary estimate, which has its root in the
work of Bourgain [14].
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Lemma 4.3. There exists a positive constant C' such that, for j = 0,1, and z € RE

(4.8) Z In| < C'lIn(|z] + 2)
¢0\z+4n—n3\+n2 - (]z\+2)

Proof. For z € R, let k € Z be such that k* < 2z < (k + 1)3. It is clear that

|n|’ |m + k|’
4.9 = .
(4.9) r;)|z+4n—n3|+n2 m%‘;éo\z—|—4(m+k)—(m+k)3|—|—(m—|—k)2

We split the sum in two parts, one for |m| < 2|k| + 2 and one for |m| > 2|k| + 2. Since k* < 2z <
(k +1)3, one can check that, for m € Z, m + k # 0, and |m| < 2|k| + 2,

|z +4(m + k) — (m+ k)3 + |m+k? > C(Im| + 1)(|k| +2)?,
and, for |m| > 2|k| + 2,
|z +4(m + k) — (m+ k)3 + |m+k?>Cm|?
(by considering |k| > 10 and |k| < 10). We deduce that
J
(4.10) Y [m + K|

mi<alTmm o 12 A+ R) = (4 k)] 4 (m o+ k)2

! Cln(|k| +2)
<c | . )
mSXZI;CH (K[ +2)273(Jm[ + 1) = (k[ +2)2
and
Im + k| . .
4.11 e B
(4.11) > lz+4(m+k) — (m+ k)3 + (m+ k)2 ~ > T = (kT 25

|m|>2|k|+2 |m|>2|k|+2

Combining (4.9 - 4.11]) yields (4.8 . O

In what follows, for an appropriate function ¢ defined in Ry x (0, L), we denote
((z,n) = / ((z,x)e mLmdxfor(z,n)eRxZ.

Recall that to define f(z, x), we extend ¢ by 0 for ¢ < 0.

Proof. | Proof of Lemma 4.1 For simplicity of notations, we will assume that L = 27w. We establish

., , and (| . in Steps 1, 2 and 3 below.

Step 1: Proof of .
We first estimate ||y(-, )|/ 12(r,) for = € [0, L]. From and (4.4)), we have

(4.12) §(zm) = - o 4;: (Z’;;)) oz for (z.n) €R x 2\ {0)),
and
(4.13) 9(z,00=0 forzeR

"We recall that an absolutely convergent sum is nothing but the integral with the counting measure, which is
o-finite. In the following, we will often exchange sums and integrals without comments, the justification being one
of Fubini’s theorem.
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L
since / f(t,x)dx =0 for t > 0 by (4.1) and (4.2). By Plancherel’s theorem, we obtain
0

2

4.14 (t, )| dt = 24z < / (zm)| .
(4.14) /R+ ,x)|°d /|yzx|dz C Z|z+4n—n3]—|—n2 dz
Since

(4.15) 1f(z.n)] < CllFllLir, x(0.0))

it follows from (4.14]) that
2

. < '
(416) [ e de < € o /Z,zﬂn_n%ﬁ d

Applying Lemma with j = 0, we derive from (4.16]) that

I (2| + 2
t,x)|?dt < C|f|? /d ;
W S Ol ciomy [, iy

which yields
(4.17) ly(, 2)[|2 < Cllfllpr ey x(0,L))-
We next estimate [|yz(-, )| g-1/3g, ) for @ € [0, L]. We have, by (4.12)), (4.13), and (4.15),

(4.18) lya (-, )3 -1/3s,)

2

1 n]
2
< CHfHLl(R+x<o,L>>/R TESEBEE 1;) ot dn—nd 12|

Applying Lemma with j = 1, we derive from (4.18)) that

In?(|z| + 2)
lye ()18, < C||f||%1(R+><(O,L))/R(|Z|_|_2)4/3 z,

which yields
(4.19) Y2 2) | 173y < Cllfllr @y x(0,0))-
Assertion (4.5 now follows from (4.17)) and (4.19)).

Step 2: Proof of . By Step 1, without loss of generality, one might assume that f; = 0. The
proof of the inequality |y(-, )| g-1/s < CllfellL1®, x(0,0)) is similar to the one of and is
omitted.

To prove

(4.20) 192 (- )| =273 () < CllfollLr @4 x(0,L)):

we proceed as follows. For z € R, it holds

n2 zn(z 13}
4.21 ——
(421) (2, 2) / f2z£ (z+4n n3) + 3n? dat.
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We have, for some large positive constant c,

nZein(z—¢) etn(z—¢) 1
< — <
Z i(z +4n — n3) + 3n2 * Z in |~ ¢ Z In|2 —
In|=c(]z[+1) In|=c(|z|+1) In|>c(|z|+1)
ein(x_g)
> < Cln(|z] + 2),

0<n|<c(|z|+1)
and, as in (4.10)) in the proof of Lemma

26in(z—§)

<Cl 2).
Z i(z +4n — n3) + 3n? < Cln(jz] +2)
0<|n|<c(|2[+1)
It follows that
2pin(z—¢) in(z—¢) C
n-e e
4.22 < Cl1 2).
2 2 iGrmo s T | S g O+
n#0 n0
Since
6m5’
Z — = —¢ + 7 for & € (0,2m),
o n
and

2 _ |9 (2, 2)
|’y$('7x)||H—2/3(R) - /R (1 + |z’2)2/3 dZ,
assertion ) follows from and (| -

We next deal with
lyllze@® sm-100,0)) < Cllf2llLr®y x(0,L))-
Since

fQ(Z n)

d
li(z + 4n — n3)| + 3n2 =

HyHL2(]R+H 1(0,L)) < C/

the estimate follows from Lemma [£.3] The proof of Step 2 is complete.
Step 3: Proof of (4.7).

25

|z| + 17

For simplicity of the presentation, we will assume that f; = 0. We have the following represen-

tation for the solution:

(4.23) => e / ilan—n)3n2) t=r) <m / falT,€)em d&) dr.

n#0

Let 14 denote the characteristic function of a set A in R. Assertion (4.7]) then follows easily from

(4.23) by noting that, for t > T + 6

Z/ \n\lo —3n?(t—7 1{T<T} dr < Cs.

n#0

The proof is complete.
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4.2. On the linear KdV equations. In this section, we derive various results on the linear KdV
equations using low regularity data information. These will be used in the proof of Theorem
We begin with

Lemma 4.4. Let h = (h1, ho, hs) € HY3(Ry)x HY/3(Ry)x L2(Ry), and lety € C([0, +00); L2(0, L))N
L2 ([0, +00); H'(0,L)) be the unique solution of the system

loc

(4.2 { Ye(t, ) + Yot 2) + Yoza(t, ) = 0 in (0,+00) x (0, L),
y(t,x =0) = hi(t), y(t, @ = L) = ha(t), ya(t,x = L) = hs(t) in (0,+00),

and

(4.25) y(t=0,-)=01n (0,L).

We have, for T >0,

(4.26) 1Yl 2(0,1)x (0,1)) < CT,L(H(hh ho)ll 2wy ) + Hh3HH—1/3(]R{)>’
and
(4.27) 1Yl 2(0,1):5-1(0,1)) < CT,L(H(hlv ho)ll g-1/3w) + Hh3”H—2/3(R)>7

for some positive constant Cr 1, independent of h.
Here and in what follows, H~1(0, L) is the dual space of H}(0, L) with the corresponding norm.

Proof. By the linearity and the uniqueness of the system, it suffices to consider the three cases
(h’la h27 h3) = (07 07 h’3)7 (h’17 h27 h3) = (hla 07 0)7 and (hla h2a h3) = (0? h2a 0) SeparatelY'

We first consider the case (hq, ha, h3) = (0,0, hs). Making a truncation, without loss of general-
ity, one might assume that hs = 0 for ¢t > 27. This fact is assumed from now on. Let g3 € C*(R)
be such that supp g3 C [T, 377, and if z is a real solution of the equation det Q(z)Z(z) = 0 of order
m then z is also a real solution of order m of hs(z) — g3(z), and

193]l sr-1/3r) < C.LllP3 | 275 R)-

The construction of g3, inspired by the moment method, see e.g. [45], can be done as follows.
Set n(t) = eil/(tQ*(T)z)ll‘tKT for t € R. Assume that zy, ..., z; are real, distinct solutions of
the equation det Q(2)=Z(z) = 0, and my, ..., my are the corresponding orders (the number of real
solutions of the equation det Q(z)Z(z) = 0 is finite by Lemma and in fact they are simple;
nevertheless, we ignore this point and present a proof without using this information). Set, for
z € C,

k k m;
¢ =Y itz =z TT = 2™ (D etz = 20') |
i=1 j=1 1=0
i

where ¢;; € C is chosen such that
dl
dz!
This can be done since 7(0) # 0. Since

. l -~
(621TZC(Z)>Z:Z. — %hg(z’i) for0<li<m,;, 1<i<k.

[i(2)] < Ce™FE,
and, by [45, Lemma 4.3],
11(2)] < Cre=C2l1"? for 2 € R,
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using Paley-Wiener’s theorem, one can prove that ¢ is the Fourier transform of a function 1 of
class C'; moreover, 1) has the support in [T, T]. Set, for z € C,

g3(t) = ¥(t+2T).

Using the fact g3(z) = €?7%((z), one can check that g3 — hs has solutions Z1, ..., 2z with the
corresponding orders my, ..., mg. One can check that
k. m;
[K4lreR <CTLZZ ,
=1 [=0

which yields
|

The required properties of g3 follow.
By considering the solution corresponding to hs — g3, without loss of generality, one might
assume that if z is a real solution of order m of the equation det Q(z)Z(z) = 0 then z is also a real

R)

solution of order m of iLg(z) This fact is assumed from now on.
We now establish (4.26). We have, by Lemma

/\

3
eti+zl _ ¢ J“L)e)‘jm for a.e. x € (0,L).

(4.28) ex: det Q

From the assumption of hg, we have, for z € R and |z| < 7,

h3(

(4.29) Q0

3
Z Ajral oA +1L) ATl < Cryllhs|l g-2/5 ),
J:l

and, by Lemma for z € R, |z| > v with sufficiently large 7,

’ c
Z (e)\j+2L _ e)\j+1L)e/\jl‘ <

(4.30) det Q = A+ )

Combining (4.29) and (4.30) yields

HZ)HLz (RX(O,L)) < CT||h3HH—1/3(R)7

which is " when (hl, h2, h3) = (0,0, h3).
We next deal with (4.27). The proof of (4.27)) is similar to the one of (4.26)). One just notes
that, instead of (4.30)), it holds, for z € R, |z| > 7 with sufficiently large ~,

C
< ——m—.
T (L=

(4.31) erirzl _ e>‘f+1L)e’\j”"

.
Mw
L
—

det )

H-1(0,L)

The details are omitted.
The proof in the case (hi, ho, hg) = (h1,0,0) or in the case (h1, ha, hg) = (0, he, 0) is similar. We
only mention here that the solution corresponding to the triple (h1,0,0) is given by

/\

(Ajr2 — Ajr1)eM @ for ae. x € (0, L),

g(?

”M“

det
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and the solution corresponding to the triple (0, ho,0) is given by

5 3

h

§(z,2) = dZt(ZC; g (Ajpreditl — N peti+2l)edi® for ae. o € (0, L).
j=1

The details are left to the reader. O

Remark 4.5. The estimates in Lemma [£.4] are in the spirit of the well-posedness results due to
Bona et al. in [I3] (see also [12]) but quite different. The setting of Lemma is below the
limiting case in [13], which was not investigated in their work.

We next establish a variant of Lemma [4.4] for inhomogeneous KdV systems.

Lemma 4.6. Let L > 0 and T > 0. Let h = (hy,he,h3) € H'/3(Ry) x H/3(Ry) x L*(R,),
f1 € LY((0,T) x (0,L)), and fo € L*((0,T); WH(0, L)) with

(4.32) f2(t,0) = fa(t, L) = 0.

Set f = fi + fop and assume that f € L'(R4;L*(0,L)). Let y € C([0,+00); L*(0,L)) N
L? ([(), +00); HY(0, L)) be the unique solution of the system

loc
(4.33) Ye(t, ) + Yz (t, ) + Yaaa(t, ) = f(t, ) in (0,400) x (0,L),
. y(t7$ = 0) = hl(t)a y(tal' = L) = hZ(t)7 yx(t7x = L) = hB(t) in (07 +OO)7
and
y(t="0,-) =0 in (0, L).
We have
430 Wl (o) < Or (10 h)li) +1sli-vsg + 1 llsce, xosn).
and
(435) HyHLQ ((O,T);Hfl(O,L)) S CT(H(h’17h’2)HH_1/3(R) + Hh3HH_2/3(R) + H(f17 f2>”L1(R+><(O,L))>'

Assume in addition that h(t,-) =0 and f(t,-) =0 fort > Ty for some 0 < Ty < T. Then, for any
0 >0 and forTh +6 <t <T, we have

(436) ()] + Ly, 2)] < Corry s (1hn, Bl sy + Isllim-sssqey + 10 )l e o)
Here Ct and Cr 1, 5 denote positive constants independent of h and f.

Proof. The proof is based on a connection between the KdV equations and the KdV-Burgers
equations. Set v(t,x) = e~ 22y (¢, 2), which is equivalent to y(t,z) = e*~%v(t,2). Then

y(t,x) = (20(t,2) + vt 2))e* ™, yo(t,z) = (—v(t,z) + v (t, 2))e* 7,
Yoww(t, T) = (Vaga(t, ) — 30g5(t, @) + 3vg(t, ) — v(t,2)) e 7.
Hence, if y satisfies the equation
Ye(t, ) + Yz (t, ) + Ypaa(t, ) = f(t,z) in Ry x (0, L),
then it holds
vi(t, ) + 40, (1, ) + Vagr (t, ) — 300 (t, ) = f(t,2)e 2 in Ry x (0, L).
Set, in Ry x (0, L),

L
(4.37) Y(t,z) =) = i/o ft,&)e 2 de  and  g(t,x) == f(t,x)e 2T — (L, z).
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Then
L
/ g(t,z)dx = 0.
0

Let y1 € C([0,+00); L?(0,L)) N L2 ([0, +00); H'(0, L)) be the unique solution which is periodic

loc
in space of the system

(4.38) y14(t,x) + 4y 2 (¢, ) + Y1 gae(t, ) — 3y1 22(t, ) = g(t, z) in (0,400) x (0, L),
and

(4.39) y1(t=0,-)=01in (0, L).

We have, by ,

(4.40) 6(t,2) = it 2)e 257 1 fo(t, 2)e 2% — gt ),

and

(141) vt = [ neoe e 1 [ p e

Applying Lemma, we have
Hyl('ax)HL?(R+) + Hyl,ﬂﬁ('ﬂx)||H*1/3(R) < CHgHLl(Rer(O,L))
which yields, by (4.37)),
(4.42) ”yl(‘vx)”L2(R+) + ‘|y1,l’(‘7x)HH*1/3(R) < CHf||L1(R+><(O,L))-
Similarly, by noting fo(t,2)e™ " = (fo(t, 2)e™>*7) — fo(t,x)e >+, we get

(4.43) 1 (s ) =175y + Y1, () -2r3®) < ClI(f1s f2)ll iy x(0,0))-
Applying Lemma [£.1] again, we obtain
(4.44) 11,2t 2)| + |yt 2)| < Cry sll(fr, f2)ll i@y xo,n)) for To + /2 <t < T.

if f=0fort>1Tj.
Fix ¢ € C(R) such that ¢ = 1for |[¢| < T and ¢ = 0 for || > 2T Let y» € C([0,400); L*(0,L))N

LIQOC([(), +00); H(0, L)) be the unique solution of the system
Y2, (t, @) + Y20 (8, ) + Y2000 (, ) = @(H)Y(¢,2)  in (0,+00) x (0, L),
ya(t, @ = 0) = ha(t) — (t)e*y1(t,0) in (0, +00),
y2(t,x = L) = ha(t) — p(t)e* Py (t, L) in (0, +00),
Yyou(t,x = L) = ha(t) — o(t) (*yi(t,-)) (¢, L) in (0,+00),

and
y2(t =10,-) =01in (0, L).
Using (4.40) and applying Lemma to yo, from (4.42), we have
@15 1l (o ryuqany) < Or (10 m)lace) + Weall-sey + 1l 0.0
and from (4.43)), we obtain
(446) 1122 (-1 0.19) < O (1011 sr—vogey + W=y + 11, o) sy o0

One can verify that y; 4+ yo and y satisfy the same system for 0 < ¢t < T and they are in the
space C([0,T]; L?(0,L)) N L?(0,T; H(0, L)). By the well-posedness of the KdV system, one has

y=wvy1 +y2in (0,7) x (0, L).
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Combining (4.42) and (4.45)) yields (4.34]), and combining (4.43]) and (4.46|) yields (4.35). Com-
bining (4.44) and (4.45) yields, for some T} + /2 < 7 < Ty + 3§ /4,

(4.47) |y Ez-10.1) < CT,Tl,é(H(hhhz)HH—l/B(R) + sl g-2/sm) + I (f1, f2)HL1(R+><(0,L))>a

and assertion (4.36]) follows by the standard C'*° smoothness property of solutions of the linear
KdV system (4.33). The proof is complete. O

Remark 4.7. One can check (4.47) by using a variant of (4.7) in Lemma in which f =0

however, a non-zero initial condition is considered.

5. SMALL TIME LOCAL NULL-CONTROLLABILITY OF THE KDV SYSTEM
The main result of this section is the following, which implies in particular Theorem

Theorem 5.1. Let L > 0, and k,l € N. Set
2k +1D)(k—1)(2l+ k)

5.1 _ _
(5-1) P 3Bk 1kl + 12372

Assume that

[1:2 2
(5.2) L =91 H#’

and
(5.3) 2k +1 ¢ 3N.
Let U be defined in (3.34), where
21 211 27
.4 = ——— 2 = —_— = _
(5.4) m s QR0 m=mA -k m =t L

and E is given by (3.10). There exists €9 > 0 such that for all 0 < € < eq, for all 0 <T < T\/2 ﬁ
and for all solutions y € C([0,+00); H2(0,L)) N LE ([0, +00); H3(0, L)) of

Yt @) + Yo (t, ) + Yaaa(t, @) + yya(t,2) =0 in (0,400) x (0, L),
y(t, e =0)=y(t,x=L)=0 in (0, 400),
(5:5) Yo (t,x = L) = u(t) in (0, 00),
y(0,-) = yo(x) := £¥(0,),
with (v € H?3(R,), [ull g2/ my < €0, u(0) =0, and suppu C [0,T1), we have
y(T',-) #0.

Remark 5.2. With the choices of p and L in Theorem the function ¥(¢,z) given in Corol-
lary satisfies the linear KdV system as noted in [I§], i.e.,

(5.6) Ui (t, @) + Yaur(t, ) + Uy(t,z) =0 in Ry x (0, L),
and
(5.7) U(t,0) = U(t, L) = Uy (t,0) = Uy (t, L) = 0 in Ry.

This property can be rechecked using the fact 7y, 72,73 are the roots of n° +n — ip = 0.
We first show that £ defined by (3.10) with 7; given in (5.4) and with p in (5.1]) is not 0 if ([5.3])

holds. More precisely, we have

8T, is the constant in Corollary with p, N, and L given previously. Note that E # 0 by Lemma H below.
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Lemma 5.3. Let k,l € N and let E be given by (3.10) with n; in (5.4) and with p in (5.1)).
Assume that (5.2]) holds. We have

407

=7 (emE —1)ikl(k +1).

Consequently,
E # 0 provided that (5.3]) holds.

Proof. With ~; = Ln;/(2mi), we have

_ 2k+1 k1 k2
"= 3 72—73 ) 73—73 .
It follows that
L3 2 2
G > i amis = n) =Y Va(vie — %) =k + il — vk +1)
j=1 j=1
=(¥3 =)k — (3 =) = (k + DKL,
which yields
3
> 2 a(mjsr —my) = —8xikl(k +1)/LP.
j=1
We also have
Z Nj+1 — 15 Z Yier— . 3k 30 3(k+1) _ 27kl(k +1)
= i+ & e k2 2%k+1 k- (k+20) 2k +1)(k—1)
We then have, by (3 ,
1 1673 27ipkl(k +1)
. E=—(emt -1 ki(k+1 :
(58) 5 )< 50 M G @ R

From and (| ., we have

p _ 2T
(k=D (k+20) 20+ k) (:TL) '

We derive from (5.8) that

4073 1 .
E = W(enl — 1)Zkl(k -+ l)
The proof is complete. U

Before giving the proof of Theorem we state and establish new estimates for the nonlinear
KdV system ((1.1) and (1.2]) which play a role in the proof of Theorem

Lemma 5.4. Let L > 0 and T > 0. There exists a constant g > 0 depending on L and T such
that for yo € L(0, L) and for u € L*(R.) with

lyollz20,z) + lullL2r,) < €0,
then the unique solution y € C([O, +00); LQ(O,L)) N LIZOC([O, +00); H(0, L)) of the system
Ye(t, ) + v (t, ) + Yoaa (b, 2) +y(t, 2)y(t, ) = 0 in (0, +00) x (0, L),
y(t,x =0)=y(t,x =L)=0 in (0, 400),
Yo (t,x = L) = u(t) in (0,00),
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with y(0,-) = yo, satisfies

(59) Hy||L2((O,T)><(O,L)) < C<||y0||L2(0,L) + Hu||H_1/3(R))7
and
(5.10) 1902 o ryr-sc0) < (I0llzzi0 + -y

where C is a positive constant depending only on T and L.

Proof. [Proof of Lemma We have, see e.g. [24, Proposition 14] for £y small,

||y1||L2 ((O,T)X(O,L)) < CT(||y0||L2(O,L) + Hu||L2(R+)>7

which yields

(5.11) < Cey.

”y’””m((o,T)x(o,L))
Set
f(t) 33) = *y(t x)axy(tv 'T)
The Cauchy—Schwarz inequality and ([5.11)) yield

||f||L1(]R+><(0,L)) < CeOHyHLQ(R_,_X(O,L))'
Applying Lemma and more precisely (4.34)), we have
lyllz2@®, x(0,.0)) < CEOH?J”Lz (Rex(0,L)) + C(H?JOHLZ(O,L) + HUHH*U?’(R))‘

By choosing ¢ sufficiently small, one can absorb the first term of the RHS by the LHS and assertion

(5.9) follows.
To prove (5.10)), one notes

) (5-11)
ly ||L1((0,T)><(O,L)) ((o,T);H—l(o,L))||y”L2((o,T);H1(o,L)) = CsOHyHLQ((O,T);H—I(O,L))'

By Lemma (this time Eq. (4.35))), we obtain

|’yHL2((0,T);H*1(O,L)) < CaOHZJHB ((07T);H71(07L)) + C(”ZNHL?(O,L) + Hu”H—2/3(R)>'

< Clyl,,

By choosing ¢ sufficiently small, one can absorb the first term of the RHS by the LHS and assertion

(5.10) follows. O

We are ready to give the

Proof. [Proof of Theorem By Lemma the constant F is not 0. Let ¢ be a small positive
constant, which depends only on k£ and [ and is determined later. We prove Theorem by con-
tradiction. Assume that there exists a solution y € C([0, 4+00); H*(0, L)) N LY ([0, +00); H3(0, L))

loc
of (5.5) with y(¢,-) = 0 for t > T, for some u € H?*/3(0,400), for some 0 < € < gy, and for some
0 <T <T,/2 with ||lul| y2/3g, ) < €0, u(0) = 0, and suppu C [0,T7].

We have, for gy small, see e.g., [24, Proposition 14],

(5.12) 1902 (o 0.9) < C (Illzoy + Il aces)-

Set

L
(5.13) vi(t,z) = y(t,z) — C/O y(t,n)¥(t,n)dn¥(t,z),
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L
with ¢! := / [T (0,7)[*dn. Since yo(z) = €¥(0,z), this choice of ¢ ensures that y1(0,-) = 0 in
0
(0,L). Then y; € C([0,+00); L*(0,L)) N LE ([0, 400); H(0, L)) is the solution of

loc

yl,t(tv .%') + yl,ﬂf(t’ l’) + yl,rﬂfr(ta .%') + f(ta .1‘) =0 in (07 +OO) X <07 L)7

yl(t>x:0):yl(tvx:L):0 in (07+OO)7
Y1,2(t,x = L) = u(t) in (0, +00),
n (Ov ) =0,
where
f(t,l‘) = fl(tv l‘) + fQ,Z(ta 33’),
with
L e (L
filtia) == [yt ¥ m dn Wit o) = § [y Waltn) dnwit.o),
0 0
and

alt ) = 54 (1,2).

By Lemma [5.4] we have

(5.14) 19,2 (@ 2yx0.9) < 0l 0.0y + Nelir-sss(ey )

and

(5.15) 190 o ar-r0.3) < (10120, + oy )

From the definition of y; in (5.13)), and (5.15)), after applying Lemma to y — y1, we obtain
(5.16) 1980 o r-rc0.03) < € (1001120, + Nlir—ogey )

Let yo € C([0,+00); L*(0, L)) N LE ([0, 400); H(0, L)) be the unique solution of
yQ,t(t7 LL’) + yQ,z(ta .T) + y27xzx(t7 LU) - _f(t7 33) in (07 +OO) X (07 L)a

yo(t,x =0) =y2(t,x =L) =0 in (0, +00),
Y2,2(t,x =1L)=0 in (0, 400),
y2(07 ) =0,

and let y3 € C([0, +00); L*(0, L)) N LE ([0, +00); H'(0, L)) be the unique solution of
y3,t<t7 x) + y3,m(t7 .’I}) + y3,xmm(t7 l’) =0 in (07 +OO) X (07 L)a

ys(t,x =0) =ys3(t,x =L) =0 in (0, +00),
y3.2(t,x = L) = u(t) in (0, +00),
y3(0,-) = 0.
Then
Y1 =Y2 +ys3.

There exists uq € L%(0, +00) such that suppug C [27%/3, Ty,
||U4HL2(O,+OO) < Cllys(2T%/3, ')”L?(QT*/S,T*)»

and
y4(T*, ) = 0>
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where y4 € C([0,+00); L*(0, L)) N L2 ([0, +00); H'(0, L)) is the unique solution of

loc
y4,t(t, l’) + y4,x(t7 fL') + y4,a:m(t, l‘) =0 in (2T*/3, +OO) X (Oa L)’
ya(t,x =0) =ya(t,c =L)=0 in (27%/3, +00),
Yar(t,x = L) = uyg(t) in (27%/3, +00),

Such an uy exists since y3(27%/3,-) is generated from zero at time 0, see [38].
Since ya(t, ) + y3(t,-) = 0 for t > T\, /2, we have

[uall 20, 400) < Clly2(2T%/3, )l L2(0,1)
which yields

Lemma
(517) Nuallzzoroe) = Ol (5, w0.m)

. 2
< C' min { HyHLQ((O,T)X(O,L))’ HyHLQ((O,T);Hl(O,L)) HyHLQ ((O,T);H—I(O,L)) }

ED.EDED :
< cmin{ (Il + lulla-sm ) ool 2.0y + lullg-2raz) ) }-
Let y € C’([O, +00); L2(0, L)) N LIQOC([O, +00); H(0, L)) be the unique solution of
U(t,x) + Yu(t, ) + Yaza(t,) =0 in (0,4+00) x (0, L),
y(t,x =0)=y(t,c=L)=0 in (0, +00),
Uu(t,z = L) = u(t) + ug(t) in (0, 400),
27(07 ) = 07
Then, by the choice of uy,

y(t,-) =0 for t > T,.

Multiplying the equation of y with W¥(¢,z), integrating by parts on [0, L], and using (5.6) and
(5.7), we have

(5.18) a "

1 L
— y(t,:):)\I/(t, x)dr — / Y2 (t, 2) W, (t,z) dz = 0.
dt 2 4

Integrating (5.18)) from O to T' and using the fact y(7',-) = 0 yield

(5.19) A ()0$m+t// (4, 2) U, (1, 2) da dt = 0.

It is clear that

L +o00 L
2(t,x x)dxdt — U2 (t, 2) U, (¢, x) dz
(5.20) o — [ [TPeovn

T (L
Y2 (t, 2) W, (t, ) da dt —/ / yi(t, 2) W, (t, x) da dt‘
o Jo

“+o00

L +oo pL
Y2 (t, 2) U, (t, ) do dt — / / P (t,2) W, (t, z) da dt' .
0 0 0

We next estimate the two terms of the RHS.
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We begin with the first term. We have

L T rL
(5.21) 2(t, 2) U, (t, x) da dt — / / Y (t, z) W, (t, ) dx dt‘
0 0

<Cly - ylHLQ( O1):H(0.1)) 1y, y1)||L2((0 TR 0.L)"

By considering the system of y — y;, we obtain

(522) ”y - ylHLz ((O,T);Hl(O,L)) < C(HyOHLQ(O,L) + HleLl ((O,T);LQ(O,L))>

ED

2
< Cllwollzor) + Clulla o ey = Clwollzzon +C(luollzzon + llla-vsm)

Combining (5.15)), (5.16)), and (5.22]), we derive from (5.21)) that

(5.23) 2(t, 2) U, (t, z) da dt — /T /L Y (t, x) U, (t, ) da dt‘
0 0

2
< Ceollyollzzo ) + C (Ivollzzqo.) + lull -2/ ) (Ioll 20,0y + Nl sr-10cxy )
We next estimate the second term of the RHS of (5.20). It is clear that

+oo

L —+o00 L
(5.24) V2 ()W (1, ) da it — / / yf(t,a:)\lix(t,:n)dxdt‘
0 0 0

<l =Tl (02 0.) 102 (01 10.0) + 12 01 0) )

Consider the systems of y1 — y and 3. We have

(5'25) Hyl - g”LQ((O,T*);Hl(O,L)) SC(HfHLl ((O,T);LQ(O,L)) + ”u4||L2(O,T))

2
Ol s (0 ryr20.27) + C (I0llzz0. + lulir-275(sy)

E.17
<

- 2
< C(lyolzzo + lulloe,) )

and, by Lemma and ((5.17)),

(5.26) 1512 (g1 -r0.17) < Ol )2y < © (ollzzony + el 2o )-

Using (5.16)), (5.25)), and (5.26)), we derive from ([5.24]) that

“+00

L +o0 L
(5.27) V2 (t )W (t, 7) d dit — / / gz(t,x)‘llm(t,:c)d:ndt‘
0 0 0

2
C(loll 20,0y + lullzzgey) (ollzz,oy + Nl 2oy )-
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Combining (5:20), (5:23), and (5:27) yields

L “+00 L
2 X X X — 72 X X X
(5.28) (t,2) U, (1, 7) da dt /0 /0 P(t, )V (t, 2)d dt‘

2
< Ceollyollzzqo,z) + € (Iloll 2.y + lullr-23x) ) (ollzzo,oy + Nullezges) -

On the other hand, from Corollary [3.7] and the choice of yo, we have
L 1 [T°° L
(5.29) / yo(x)¥ (0, x) dx + 3 / / V2 (t, )V, (t, ) do dt
0 0 0

> C(llyolz2(o,z) + N+ waly 2/ )-

Using the fact

- uall 325 gy = Cllullfr-2/(m) = Cllusllzae) e CIIUIIH 23wy — O 1Yol 2(0,0) + [l zr-1/3 y
(R) (R) (R) ®) (R)

we derive from ([5.29) that, for small g,

L 00 L
(5.30) /0 yo(x)\I/(O,x)d:U+% /0 /O Pt ) (¢, 2) da dt

> C (llyollzzo ) + Il 2/szy) = Cllulllyssey.
Combining (5.19), (5.28), and ([5.30]) yields

2
(5.31)  Ceollyollz20,) + C(||:U0HL2(0,L) + HUHH*2/3(R)> (HyoHL2(o,L) + ”UHL2(R+))

+oo
2(t,2)U,(t, ) dmdt—/ / (t,x)¥ ta:)da:dt‘

19

2/ o(2)¥(0, ) dz + = / /“th +(t, ) dx dt
0

>

C (lloll 20,2y + 1l 27y — Cllully-1/agzy )

It follows that, if ¢ is fixed but sufficiently small,

(5.32) lully-1/5 gy + Nl -2 ullf 2w,y = Cllully-2sgy-
We have

(5.33) lull -1y < Cllullzz@ylull g5y < Ceollullg—2/5).

and

(5.34) HU||L2 < Cllull g2/ R)HUHH2/3 (R)>

(recall that we extended u by 0 for t < 0). Let U be the even extension of u e in R. Applying
+
the Hardy inequality for fractional Sobolev space H?/3(R) for U after noting that U(0) = 0, see
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e.g. [35, Theorem 1.1] EL we derive that
I 172U Ol 2@y < ClNU prars ey

We have
Ul 23wy < Cllullgers e, )

since U is an even extension of u, and

2 U(s) — U @) 2 ()
’U|H2/3(R) ~ /]R " m det, ‘U|H2/3 ®, Jr, ‘S — t|1+4/3 dS dt

We derive that
1117230 2y < Cllull /s, )
Since

> Ju(s) — u(t)?

=<0 (1) |u(®)[?
/R+ /R+ |s—t|1+4/3 dx dy+0/u£+ e dt
2

u(t
gc*||uy\§m3(R+)+c/R |t51/)3| dt,
+

it follows that

(5.35) HUHH2/3(R) < CHUHH2/3(R+)‘
Here we also used the fact v =0 in R_. Combining ([5.34]) and (5.35)) yields
(5.36) lull?2 gy < Ceollull 275 w)-

Using (5.33) and (5.36]), we derive from (5.32) that, HuHH,Q/3 < CegHqu,2/3 + CeoHquq,wg.
So, for ﬁxed sufﬁmently small &g,

u = 0.
As a consequence, we obtain
ly(t,-) = e¥(T2/2, )|l 20,0y < CE™.

One has a contradiction if €q is sufficiently small. The proof is complete. O

Remark 5.5. Viewing the proof of Theorem it is natural to ask whether or not one needs
to derive estimates for the (linear and nonlinear) KdV systems using low regular data. In fact,
without using these estimates, one might require that ||u|| 20,7 or even [[ul| g3 1y is small.

6. CONTROLLABILITY OF THE KDV SYSTEM WITH CONTROLS IN H!

For T > 0, set
X =C([0,TY) N L2((0,7); H([0, L]))
with the corresponding norm. Here we denote
Y = H3(0,L) N H}(0, L),
which is a Hilbert space with the corresponding scalar product.

In this section, we prove the following local controllability of the KAV system (|1.1)) and (1.2):

9We here apply [35] ii) of Theorem 1.1] with vy = -2/3, 7=p=2,s=2/3,a=1, a =0.
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Theorem 6.1. Let L > 0, and k,l € N. Let p be defined by . Assume that (5.2)) holds,
2k + 1 ¢ 3N, and the dimension of M is 2. Given T > w/p, there exists g > 0 such that for
Yo, yr €Y with

(o, yr)lly < €,
there exists u € HY(0,T) such that u(0) = y}(L),

1/2
lulln oz < Clltwo, yr) Iy,
and the corresponding solution y € X of the nonlinear system (1.1)) with y(t = 0,-) = yo satisfies
y(t = T7 ) =yr-
We recall a result in [12] ([I2, Lemma 3.3] applied to s = 3) on the well-posedness and the
stability of the linearized system of (1.1]).

Lemma 6.2. Let L >0 and T > 0. For yo € H*(0,L)NH{(0,L), f € WH([0,T]; L*(0, L)), and
u € HY(0,T) with u(0) = y4(L). There exists a unique solution y € X of the system

Ye(t, ) + Yo (b, @) + Yawa(t,2) = f(t, ) fort € (0,T), z € (0,L),
6.1) y(t,x =0)=y(t,x =L)=0 forte (0,T),
Yo (t,x = L) = u(t) forte (0,T),
y(t=0,-) =y forz € (0,L).
Moreover,

Il < O (Ul (o ra00,) + Ilirom)-
for some positive constant C depending only on L and T

Remark 6.3. By the same method, the conclusion also holds for the non-linear KdV equations if

||f||W1,1((07T);L2(0,L)) + [luol| (0, ) is small.

In what follows in this section, M* denotes all elements of ¥ orthogonal to M with respect
to L?(0, L)-scalar product. We also denote Py and P,,1 the projections into M and M+ with
respect to L?(0, L)-scalar product. Before giving the proof of Theorem [6 ., let us establish two
lemmas used in its proof. The first one is a consequence of the Hilbert Uniqueness Method for
controls in H' and solutions in X.

Lemma 6.4. Let L € N and T > 0. There is a continuous linear map L : M+ — H(0,T) such
that for ¢ € M+ and u = L(p), then u(0) = 0, and the unique solution y € X of

ye(t, o) + yu(t, ) + Ypua(t,2) =0 fort € (0,T), x € (0,L),
ylt,z=0)=y(t,z=L)=0 forte (0,T),
yo(t,z = L) = u(t) fort e (0,T),
y(t=0,-) =0,

(6.2)

satisfies y(T,-) = .
Proof. Set
M = {w e MLiw,(0) = 0}.
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For ¢ € Mll, by Lemma there exists a unique solution y* € X of the backward KdV system
yr(t, o) +yi(t, ) + yi.(t,x) =0 forte (0,T), z € (0,L),
y*(t, e =0)=y*(t,x=L)=0  forte (0,7),
yi(t,z=0)=0 for t € (0,7),
y*(T,-) = 4.

Applying the observability inequality to y* and y; (see e.g. [I8, Theorem 2.4] and also [38] the
proof of Proposition 3.9]), we have, for v > 1,

(6.3)

T L
/T WD S D ez 0 /0 Ay (T, 2) 2 + Iy (T, 2) 2 da,

where in the last inequality, we used the fact that if ¢» € M then " +4)' is also in M (this can
be proved through integration by part arguments; recall that M= is defined via L?(0, L)-scalar
product). In other words,

T L
(6.4) / L)+ Iyt D) dt > C / VP + " + P da.
T/2 0

Fix a non-negative function n € C'([0,7]) such that n = 1 in [T/2,T] and = 0 in [0,7/3].
Since

L L
/0 7‘¢|2+|¢///+w/|2dx:/0 'Y‘?MQ‘F‘wll/’2+’1//‘2+2¢”/¢/dl',
and, for all € > 0,
L L
| ke < [T e ol da,
it follows that, for large =,
L
(6.5) A+ 1+ P e 2 Cll
We have
T
|z nja< [

Here in the last inequalitiy, we applied [38, (58) in the proof of Proposition 3.7] (see also [18|
Proposition 2]) to y* and y;. It follows from (6.4]) and (6.5)), for v large enough, that

T L
e yal® +elys)? dt < C/ e PP + ey + ') dz.
0

T
(6.6) / Ol (E L) + v (6 D) (st L)), dt = Collls oz

For a given ¢ € M{, by the Lax-Milgram’s theorem and , there exists a unique ® € Mj
such that
T

L
(6.7) /O ot + (" + ) (" + ) da = /0 VY (YD) dt V€ MY

where Y* is the solution of with ¢ = .
Let y € X be the solution of with u(-) = L1(¢) = n(-)Y; (-, L). Then, by integration by
parts,
T

L
(6.8) /0 Wy(T,-)+(¢”’+¢’)(ym(T,-)+yx(T,~))d:v=/0 VYInYy +yn (Y )edt Vi € Mi.



40 JEAN-MICHEL CORON, ARMAND KOENIG, AND HOAI-MINH NGUYEN

From and , we obtain
L L
/0 Yoo + (" + @)W + ) —/0 Yy(T, ) + (" + ) Wawa (T, ) + 42(T, ) Voo € M.

Since y and Y* satisfies system with the same u for ¢t € [T'/2,T], it follows that y(t,-) —
Y*(t,-) e M fort € [T/2,T]. In partlcular y(T, ) 6 My since Y*(T,-) € Mi. Combining this
with the fact that ¢ € Mj, we then derive from (6.5 that

The conclusion for 27" (instead of T') is now as follows. Fix ¢ € C([0,2T]) with ¢(2T) =1 and
¢(t) =0 for t < 5T /4. For ¢ € ML, let ¥* be the unique solution of

yr(t,x) +yi(t,x) + g (t,x) =0 fort € (T,2T), x € (0,L),
y*(t,e =0)=y*(t,x =L)=0  forte (T,2T),
Tilto = 0) = g, (2T,00C(t)  for t € (T,2T),
yr(2T,-) = .
One can check that §*(T,-) € Mj. Set
yr(t, L) for t € (T,2T),
Li(y(T,)(t)  fort € (0,T).

It is clear that L(p) € HY(0,2T) since 3.(-,L) € HYT,2T), L1(y*(T,-)) € H(0,T), and
Li(g*(T,))(T) = yi(T, L), and that the corresponding solution at the time 27" is . The proof is
complete. 0

(6.9) L(p)(t) = {

For r > 0 and an element e € Y, we denote B,(e) the ball in Y centered at e with radius r, and

B,(e) its closure in Y. The second lemma is a consequence of the power series method and the
information derived in Sections [3] and [l

Lemma 6.5. Let L > 0, and k,l € N. Let p be defined by . Assume that holds,
2k + 1 & 3N, and the dimension of M is 2. Let T > w/p and 0 < ¢1 < co. Fix ¢ € M with
c1 < |lelly < co. There exist a constant 0 < c3 < c1/2, and two maps Uy : Bey(p) — H(0,T)
and Us : Bey () — H(0,T) such that for 1 € Bey(¢), Ui(¢)(0) = Ua()(0) = 0, and the unique
solutions y1 and y2 in X of the following two systems, with u; = U1(p) and uz = Us(p),

y1,t(t,$) + y1,$(ta x) + yl,aww(tvx) =0 fOT te ( ) ) ( )
y(t,e=0))=y1(t,z=L)=0 fort e (0,7),
(6.10) ( ) ( ) (0,7
Y1z(t,x = L) = uy(t) fort e (0,T),
y1(t=0,)=0 fort e (0,T),
y2,t(t,$) + yQ,x(tax) + y2,mm(t7$) + yl(t7x>yl,w(tax) =0 fOT’ te (OaT)v HARS 07 L):
(6.11) yo(t,z =0)=ya(t,z =L)=0 fort e (0,T),
' Yo.z(t,x = L) = ua(t) fort e (0,T),
y1(t=0,)=0 fort e (0,T),
satisfy

n(T,)=0 and yo(T,-) = .
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Moreover, for 1, IZ € Be,(¥),

(6.12) U (%) — Ur () o0y < Cllo — 9lly
and
(6.13) 1U2(%) — U2 ()l 0.7y < Cllv — Yl

for some positive constant C depending only on L, T, c1, and ca.

Proof. By Lemma and Corollary for all 7 > 0, there exists v; € HZ(0,7) such that if
y1 € X is the solution of (6.10) with u; = v and y, € X is the solution of (6.11)) with uy = 0 then

ya(7,) € M\ {0}

Since c3 is small, dimM = 2, and v; € HZ(0,L), by using rotations (see also [I8, the proof of
Proposition 13]) there exists Uy (v) with Uy (1)(0) = 0 satisfying (6.12]) such that if y; € X is the
solution of (6.10) with uy = U1(¢) and g2 € X is the solution of (6.11]) with ug = 0 then

U2 = Ppmap.

We then choose
ug = L(J2 — Pm),
where £ is a map given by Lemma [6.4] O

We are ready to give the

Proof. [Proof of Theorem

Fix yg,yr € Y with small norms. For simplicity of the presentation, we will assume that
llyolly < |lyr|ly (the other case also follows from this case by e.g. reversing the time: ¢t — T — ¢
and noting that y,(-,0) is in H'(0,T); this can be derived by considering the equation for y; E[)
Set p = ||yr||y and assume that p > 0 otherwise, one just takes the zero control and the conclusion
follows.

Let wq be the state at the time T of the solution of the linear system with the zero control
starting from Py at the time 0. We first consider the case where

(6.14) | Prmyr — woll 20,y = 2¢p,
for some small constant ¢ independent of p and defined later.
Set
G: Y NBelyr) — HY0,T)
o = pug + p%ug + pua.

Here we decompose ¢ as
¢ = Pyprg + Pap,

ug € H'(0,T) is a control for which the corresponding solution yq in X of the linear system ([6.2)
starting from Py 1yo/p at 0 and arriving Py 1 ¢/p at the time T, and u; and ug are controls for
which the solutions y; € X and yp € X of the system (6.10) and ((6.11) with the initial data
Pumyo/p instead of 0) satisfies y1(T,-) = 0 and y2(T,-) = Pumep/p. Moreover, by Lemma
one can choose ug in such a way that ug = ug(p) is a Lipschitz function of ¢ with the Lipschitz
constant bounded by a positive constant independent of p, and by Lemma [6.5| one can choose
u; = u1 () and ug = ua(p) as Lipschitz functions of Prp/p with the Lipschitz constants bounded
by positive constants independent of p.

10The compatibility condition is automatic.
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Set
P: {weHl(O,T);w(O):y(’)(L)} ~ H30,L)
w — y(T7')7

where y € X is the unique solution of the nonlinear system ([1.1) with © = w starting from yo at
time 0. Consider the map

A Y NBe,(yr) — Y
v = @ —PoG(p) +yr.
We will prove that
(6.15) A(p) € Bep(yr),
and
(6.16) [A(0) = A@)]ly < Ale = 9lly,

for some A\ € (0,1). Assuming this, one derives from the contraction mapping theorem that there

exists a unique g € Y N Be,(yr) such that A(pg) = ¢o. As a consequence,
yr =P o G(wpo),

and G(p) is hence a required control.

We next establish (6.15]) and (6.16]). Indeed, assertion (6.15]) follows from the fact
3/2 SR Y
le =P oGp)lly < Cllelly” for ¥ 0 B,a(ur).

This can be proved using the approximation via the power series method as follows. Set E

u=pug+p"2ur +puz  and  y, = pyo + p"y1 + pya.
Let y € X be the solution of the nonlinear KdV system (1.1)) with y(¢t = 0,-) = yo and with u
defined above. Then
(Y = Ya)t + (U — Ya)z + (¥ — Ya)zazw + Yz — YaYau = f(t, ),
where
—f(t.x) = p*2(y112)e + P*Y202.0 + P*YoYor + 0°° (ya(y1 + p1/2yz))x-
Since

YYz — YaYa,x = (y - ya)y:p + Ya (yx - ya,x)a
applying Lemma [6.2] we obtain, for small p,

_ 3/2
(617) 19 = vllx < Clf s (o pyrz0my) < ™

Assertion ((6.15)) follows since y(7T,-) = Po G(y) and yu (T, ) = ¢.
We next establish (6.16]). To this end, we estimate

(p-PoG(p) - (F-PoG(@)).

Denote ng, u1, Uz, w and yo, ¥1, Y2, Ya, y the functions corresponding to ¢ which are defined in the
same way as the functions ug, u1, u2, v and yo, y1, y2, Yq, y defined for .
We have

Y=+ Y=Yz + (Y~ Pazz + YYz — Yz = 0,
(ya - ga)t + (ya - ga)x + (ya - ga)xwz + yaya,$ - gaga,z = 9(t7 1’),

HThe index a stands the approximation.
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where

(618) g(t’ ‘T) = :03/2 ((ylyZ)l“ - (?71?72)23) + p2 (y2y2,x - ?72?72,30) + P2 (YOYO,Q: - yoyo,x)

+ p*/? <YO(3/1 + 0 %y9) — Fo(t1 + ,01/2§2))x~

This implies
(y_ya - g+ ga)t + (y — Ya — g"’_ ga)x + (y — Ya — g+ ga):cmc

- - ((y - ya)yx + ya(y - ya)a? - (g_ ga)gx - ga(g_ ga):r: =+ g(tv SC))
= (= va = T+ Ga)¥e + W = 5)F — o) + Y0y — Ya — T+ Ta)a
+ (ya - ga)(g_ ga)ac + g(t, .CC)>

= <(y — Ya — ?7+ ga)yx + ya(y — Ya — 37+ ga):(: + (yx —Ya,x — gx + ga,x)(g* ?7(1) + h(ta .T)),

where
h(t,z) = g(t,x) + (ya,ﬂc - ga,z)(y_ Ya) + Ya = Ya) (U — Ya)a-
Using Lemma [6.2] we derive that, for p small,

(6'19) Hy ~Ya — g“’ gaHX < CHh(ta $)Hw1,l((07T);L2(O’L))'
We have
~  ~ (617 3/2 ~ —1/2 ~
1Y =Y, ¥ = Ya)llx < Cp”7, |ya — Yallx < Cp™“llo —@lly,
and

12 . ~
Hg(t’m)HWLl((O,T);LQ(O,L)) <Cp HSO (PHY'

It follows that
(6.20) I D)l (i gz0.y) < CP N = 6l

which yields, by (6.19)),
1y = ya — T+ a)(T, )y < Cp"llp = v
Assertion ([6.16)) follows.

We next consider the case || Ppmyr —wollgs(o,z) < 2¢llyrl|m3(o,r)- In fact, one can bring this case
to the previous case as follows. Fix ¢ > 0 small. By Lemma and Corollary there exists
vy € HZ(0,¢) such that if y; € X (with T = €) is the solution of with u; = v1 and 3o € X
is the solution of with us = 0 then

ya(e, ) € M\ {0}.
Let ug,, u1,7, u2,r be such that ugr is a control for which the corresponding solution in X of
the linear system (6.2) starting from y7(L — -)/p at 0 and arriving 0 at the time e, u; 7 = v,
UgT = y?vy for some v > 0 defined later. Let y be the unique solution of the nonlinear KdV
system in the time interval [T, T + €] using the control

puo(- = T) + p'*ur(- = T) + pua(- = T),

with y(7,-) = yr(L — -). By choosing v large enough, yo and y(T + ¢, L — -) satisfy the setting of
the previous case for the time interval [0, 7 + ¢] (instead of [0, T]). One now considers the control
(for the nonlinear KdV system) in the time interval [0, 7 + 2] which is equal to the one which
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brings yo at the time 0 to y(T' 4+ &, L — -) at the time T + ¢ obtained in the previous case in the
time interval [0,7 + €], and is equal to —y,(2(T + &) — ¢,0) for t € [T +¢,T + 2¢]. It is clear
that the solution of the nonlinear KdV system at the time T+ 2¢ is yp. The proof is complete by
changing T'+ 2¢ to T'. O

Remark 6.6. Similar result as the one in Theorem [6.1| also holds for o, yr € H2(0,L) N HZ(0, L)

and v € H 3(0,T). More precisely, one has the following result. Let L > 0, and k,I € N. Let p
be defined by (5.1). Assume that (5.2]) holds, 2k + [ ¢ 3N, and the dimension of M is 2. Given
T > 7t/p, there exists g9 > 0 such that for yo,yr € H?(0, L) N H}(0, L) with

(Yo, y1)ll 72(0,1) < €0,
there exists u € H?/3(0,T) such that u(0) = y(L),

1/2

Il 7507y < Cll o, wr) 372
and the corresponding solution y € C([0,T]; H*(0,L)) N L*((0,T); H*[0,L])) of the nonlinear
system (L.I)) with y(¢ = 0,-) = yo satisfies y(t = T, -) = yp. This is complementary to Theorem [5.1]
The only important modification in comparison with the proof of Theorem is Lemma

Nevertheless, the method presented in its proof can be extended to cover the setting mentioned
here (initial and final datum in H?(0, L) N H}(0,1) and controls in H?/3(0,T)). We also have

(6:21) Iy ) Lzzrsc0:2y < C (10, Moy + e Dl oy )

for solutions y € C([0,T]; H*(0,L)) N L*((0,T); H*[0, L])) of with small norm. Asser-
tion would follow from [12] applied to s = 2. Here is another way to see it. Split y
into two parts y; and yo where y; is the solution of the linearized system with zero initial data
and y1 (-, L) = yz(-,L). As in the proof of Lemma one can prove

(6.22) Hyl,m('70)”H2/3(0,T) < CHyw('aL)HHQB(O,T)'

Concerning ys, by considering yy, as a source term, similar to the proof of Lemma [4.6] one can
prove

(6.23) 925 Ollagory < C (IO Moy + 1996l 2 (g 7110.1) )
Since

< Clyli?

¢ (l0r#2(0.0)) L2 (0.1 910,11 (by the embedding theorem)

Yy HLz ((O’T);HQ (O,L))

2
< O(190. ).y + 12 Dl oiry) - (by [12 Theorem 3.4] applied to s = 2),
assertion (6.21]) follows from (6.22)) and (6.23). Therefore, the arguments using the backward

systems also work in this case.

Remark 6.7. The proof given in Theorem can be extended easily to the case L ¢ N to yield
the small-time local controllability of (1.1]) with initial final and initial datum in H3(0, L)NH}(0, L)
(resp. H?(0,L) N H}(0, L)) and controls in H'(0,T) (resp. H*3(0,T)).

Remark 6.8. Let L € N. Assume that dim M is pair and for all (k,l) € N*> with k > [ > 1 and

L= ﬁ\/ W, it holds 2k +1 ¢ 3N. Then, using the same method in the proof of Theorem
and involving the ideas in [20], one can prove that the system ((1.1)) and (1.2} is controllable at the

time given in [20].

Remark 6.9. The mappings G and A have their roots in [24] (see also [1§]).
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Remark 6.10. Lemma [6.4] is motivated by the Hilbert Uniqueness Method and inspired by the
construction of smooth controls (for different contexts, e.g. the context of the wave equation) in
[27]. The function n used there is inspired from [27]. Nevertheless, we cannot take n = 0 near T'
as in [27]. We also add a large parameter X in the proof.

Remark 6.11. In the proof of Lemma [6.5] we use essentially the fact that for all 7 > 0, there
exists v € HOQ(O,T) such that if y; € X is the solution of (6.10) with u; = v; and yo € X is the
solution of (6.11)) with ug = 0 then

ya(7,) € M\ {0}

This is a consequence of Lemma [5.3] and Corollary It is not clear for us how to use a con-
tradiction argument as in [24] [I8, 20] to obtain such a function v;. This is why we cannot im-
plement the strategy in [24, (18| 20] to derive the local controllability for initial and final datum
in H3(0,L) N H(0, L) with controls in H'(0,T) for all critical lengths and for small time when
dim M =1 and for finite time otherwise.

Remark 6.12. We emphasize that the way to implement the fixed point argument for A presented
in this paper is somehow different from the one in [I§]. We only apply the fixed point arguments
once instead of twice, first for Py A and then for PyA as in [18]. The Brouwer fixed point
theorem is not required in our analysis.

APPENDIX A. ON SYMMETRIC FUNCTIONS OF THE ROOTS OF A POLYNOMIAL

This is standard for people knowing algebraic functions [I, Ch. 8 §2], but for the sake of com-
pleteness, we justify that an analytic symmetric function of the roots A\;(z) of A> + A +iz =0 is
an entire function.

Lemma A.1. Let (A\(2),\2(2), A\3(2)) be the three roots of > + X\ +iz = 0. Let F: C* — C
be holomorphic in C3 and symmetric, i.e., for every permutation o € 3, F(z5(1), 20(2)> 20(3)) =
F(z1,22,23). Then, the function G: z € C — F(A1(z), Aa(2), A3(2)) is entire.

Note that the ordering Ai(z),A2(2), A3(z) is not unique (and we could prove that we can-
not chose an ordering that makes any of the \; entire), but since F' is symmetric, the value
F(A1(2),A2(2), A\3(2)) does not depend on the ordering.

Proof. Note that, for zg # +2/(3v/3), the discriminant of X3 4+ X + iz is nonzero, and thus the
roots of X3 + X + iz are simple. By the implicit function theorem, there exists some complex
neighborhood U of zj, some neighborhood Vj of A\j(zp) (1 < j < 3), and three holomorphic func-
tions pj: U — Vj such that p1(2), pa(2), us(2) are the three distinct roots. Since F is symmetric,
it follows that G(z) = F(p1(2), p2(2), u3(2)) and is therefore analytic in U. Consequently, G is
analytic in C\ {£2/(3v/3)}.

It suffices then to prove that G is continuous at +2/3v/3. The roots )\;(z) are continuous, even
around at +4/4/27, in the sense that for every € > 0, there exists 6 > 0 such that for every |z—zp| <
§, there exists some ordering of the Ay, (2) such that [Ar, (2) — A1(20)| 4 - - 4 [Ars (2) — A3(20)] < €
(this can be seen e.g. thanks to Cardano’s formula). Thus G(z) is continuous at zp = £/4/27

and +/4/27. O

Remark A.2. A variant of Lemma[A.1]still holds for more general polynomial equations P(z, \) =
0, but we wanted to avoid some technicalities of such a general equation. The general case would
be a consequence of the fact that the solutions of P(z,\) = 0 define a finite number of algebraic
functions, see [I, Ch. 8 §2].
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APPENDIX B. ON THE REAL ROOTS OF H, THE COMMON ROOTS OF G AND H, AND THE
BEHAVIOR OF | det Q|

We begin with
Lemma B.1. Let z € R. We have
1) if z # +2/(3v/3) and H(z) = 0, then, for some k,l € N with 1 <1<k, L = 27“/%,

and
_ 2k +1)(k—=1)(2l + k)
(B.1) °T 3V3(k2 4+ kl +12)3/2
Moreover,
211 211 21
(B.Q) )\1(2) = —7(2]6 + l) )\2(2) = )\1(2) + —k, )\3(2) = )\2(2) + —1,

3L L

and z is a simple zero of the equation H.

2) if z = £2/(3/3) then

(B.3) M(z) = EF\/g No(z) = EF\/?: No(z) = ijg

z is not a zero of H, and z is a simple solution of the equation det Q(z)Z(z) = 0.

Proof. We begin with 1). By Remark assertion (B.1]) holds. Assertion (B.2)) then follows from
[38]. To prove that z is then a simple root of the equation H(z) = 0 in the case z # +2/(3v/3),
we proceed as follows. We have

1€

)\j(Z +€) = Aj(z) — m
J

+ O(e?).

It follows that

Mw

det Q(z +¢) = (Nji(z+e) = Nz + 5))6—A1+2(Z+8)L
7=1
s i€ i€ ieL
s+1(2) = A(2) - +0(2))e MOk (14 4 0(2).

;< 3M\5, +1 3A§+1 ) ( BAZ,, + 1 )

Since
e*)\l(Z)L _ ef)\g(z)L _ 67,\3(Z)L’
we derive that
S Ma(2) = M)

(B4) det Q(Z + 5) = igLe_)‘l(z)L Z j+1(Z J + 0(62).

= 3)\j+2( z)+1
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In what follows, for notational ease, we denote \;(z) by \;. We have

3

Nij1— A, 2mi k l k+1
(B-5) 3; +i:L<3)\2+1+3/\2+1_3)\2+1>
j=1 27N+2 3 1 2
2mi [ 3K03- ) 33— 1)
L \(BN+DBMNA+D)  BM+1DBA+1)
(2P BRI+ Ag) L 3KOo+ )
-\ L BM+1)BN+1)  BM+1)BA+1)/)°
Note that

(B.6) (A2 +A)BA2+1) — (M2 +A3)(3X2 +1)

= ()\1 — )\3) + 3()\3 — )\1)()\1)\2 + A3 + )\2)\3) = 2()\3 — )\1),

since \jA2 + A1As3 + A2A3 = 1. From (B.4), (B.5)), and , we derive that z is a simple root of
H(z).

We next consider 2). We only consider the case z = 2/(3v/3), the other case follows similarly.
By (2.19) in the proof of Lemma [2.6, we have

i \/ RVES 27
(B.7) A\i(z+e) = f Py \/+O( ), Aa(z+e) = ~ 33 \/+O( ), A3(z+€) = %JFO(e).
It follows that
211/ —
det Q(z +¢) = \[31/4\f+0()
Since E(z + €) = ¢4/ for some ¢y # 0 by (B7), = = 2/(3V/3) is not a root of the equation
H(z) =0 and z is a simple root of the equation det Q(2)Z(z) = 0. The proof is complete. O

Lemma B.2. Let z € C be such that z # £2/(3v/3). Assume that H(z) = G(z) = 0. Then, for
some k,l € N with k > 1> 1, we have

[k2 4 ki + 12
(B.8) L=2r %

and

Ck+1D)(k—-1)20+k)

3V3(k2 + Kkl +12)3/2

Proof. By Remark (see also Lemma [B.1)), it suffices to prove that if z € C is such that
z #42/(3v/3), and H(z) = G(z) = 0, then z is real. Indeed, note that

det Q(Z) = ()\1 — )\3)(6—>\2L . €—>\3L) + ()\3 N )\2)(€—>\1L _ €—>\3L)’

(B.9) z2=—

and
—P(2) = (A1 — A3) (el — ™) 4 (A5 — Ag)(eMD — eMsl),
It follows that
(B.10) |det Q(z)| = 0 if and only if (A5 — A1) (e ™22 — 1) = (Mg — Ag) (e L 1),
and

(B.11) |P(2)] = 0 if and only if (A3 — A1) (e~ 722E — 1) = (A3 — Ag) (e~ P2l 1),
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Solving the system

Zf’?: A =0,
(B.12) { R
2j=1 AjAj = 1,
in which A3 is a parameter, one has, with A = —3/\§ —4,
— A -3 — VA
AlZM and )\ZZJ-
2 2
This implies
33 — VA 3\ A
(B.13) a:a(Ag)zAg—Alz?’Q\F and ﬁ:/B(Ag):Ag—AF?’;\f.

Thus, if z is a common root of |det Q| and |P| and A;(z) # Aj(z) for i # j (1 <i,j < 3), then,

by (B-10) and (B11).
(e = (e = 1) = (e — 1) (e~ 1),
which is equivalent to
(e2F — LY (e —1)(PF — 1) = 0.

This implies that either e®? = Pl or e®F =1, or e#' = 1. Since A1, A2, A3 are distinct, it follows
from (B.10) and (B.11]) that
(B.14) el =Pl =1,

We derive from (B.13)) that
3\; € 2miZ/L.

Since
)\g + A3 = —iz,

it follows that z is real. The proof is complete. O
We finally establish

Lemma B.3. There exist ¢, C > 0 and mg € N such that
1) for m € Z with |m| > myg, we have

3
|det Q(2)] > Ce~=I"" if §(z) = ((2m + 1)7r/(\/§L)> :
2) for z € C with |z| > mq and |R(2)| > ¢|2|'/3, we have

[det Q(2)| = Ce™

1/3

Proof. For z € C with large |z|, denote A1, A2, A3 be the three roots of the equation

N\ =—iz,
with the convention R(A3) > max {R(A1), R(A2)}, and, with A = —3)3 — 4,
- A A3 — VA
A = ?);f and Ay — 32f

This is possible since
A1+ A2 = =g,
{ MA2 =1+ A3
We have
A3t det Q(2)e™ | = | F(Na)],
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where

_3A3— \/Z(GLS;ﬁL 1

(B.15) FO) = B+ VA masvay

2 ) v S

Since Ag is large, we have

(B.16) (3_; 3) FOg) = [1+0(2)) (™52 ML+005" _ 1)

. [1 + O()\§2)]€w0 (egfé‘/g)\aL-i-O(/\;l) o 1)7
where g = 7/3 since 3‘*‘;7‘/3/% = elo,

3
We begin with 1). It suffices to prove, for z € C with $(z) = ((Qm + 1)7r/(\/§L)) with large
|m| (m € Z), that

(B.17) A3t det Q(z)eMsh| > 1.

Assume that (B.17) does not hold. Then for some m € Z with large modulus and for some z € C
3

with §(z) = ((Qm + 1)77/(\/§L)) , we have

() < 1.

Since R(A3) > 0 and is large, it follows that

i3 —iV3
e ETNE = (14 00g ) le” = M0

One derives that, if A3 = a + ib with a,b € R,
(B.18) a is large and [b] = O(\3 ).

It follows that

3+iV3 3aL :v/3alL -1
e+>‘3L = eaT@lTan()% )

and

3—iV/3 3alL - \/3aL -1
e+)‘3[’ :eaTefl 3 eo()‘S )

3
Using (B.16]), and the fact |f(A3)| < 1 and S(z) = ((2m—|—1)7r/(\/§L)) , we obtain a contradiction.

Hence holds. The proof of 1) is complete.

To establish 2), it suffices to prove for z € C with |z| > mg and |R(2)| > ¢|z|"/? for some
¢ > 0. This indeed follows from the fact if |z| is large and |f(A3)| < 1, then holds. The
proof is complete. O
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