The scaling limit of the directed polymer with power-law tail disorder - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2021

The scaling limit of the directed polymer with power-law tail disorder

Résumé

In this paper, we study the so-called intermediate disorder regime for a directed polymer in a random environment with heavy-tail. Consider a simple symmetric random walk $(S_n)_{n\geq 0}$ on $\mathbb{Z}^d$, with $d\geq 1$, and modify its law using Gibbs weights in the product form $\prod_{n=1}^{N} (1+\beta\eta_{n,S_n})$, where $(\eta_{n,x})_{n\ge 0, x\in \mathbb{Z}^d}$ is a field of i.i.d. random variables whose distribution satisfies $\mathbb{P}(\eta>z) \sim z^{-\alpha}$ as $z\to\infty$, for some $\alpha\in(0,2)$. We prove that if $\alpha< \min(1+\frac{d}{2},2)$, when sending $N$ to infinity and rescaling the disorder intensity by taking $\beta=\beta_N \sim N^{-\gamma}$ with $\gamma =\frac{d}{2\alpha}(1+\frac{2}{d}-\alpha)$, the distribution of the trajectory under diffusive scaling converges in law towards a random limit, which is the continuum polymer with L\'evy $\alpha$-stable noise constructed in the companion paper arXiv:2007.06484.
Fichier principal
Vignette du fichier
DiscretStable_arxiv.pdf (590.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02977536 , version 1 (25-10-2020)

Identifiants

Citer

Quentin Berger, Hubert Lacoin. The scaling limit of the directed polymer with power-law tail disorder. Communications in Mathematical Physics, 2021, ⟨10.1007/s00220-021-04082-2⟩. ⟨hal-02977536⟩
53 Consultations
59 Téléchargements

Altmetric

Partager

More