EXISTENCE OF ALMOST AUTOMORPHIC SOLUTION IN DISTRIBUTION FOR A CLASS OF STOCHASTIC INTEGRO-DIFFERENTIAL EQUATION DRIVEN BY LÉVY NOISE - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

EXISTENCE OF ALMOST AUTOMORPHIC SOLUTION IN DISTRIBUTION FOR A CLASS OF STOCHASTIC INTEGRO-DIFFERENTIAL EQUATION DRIVEN BY LÉVY NOISE

Résumé

We investigate a class of stochastic integro-differential equations driven by Lévy noise. Under some appropriate assumptions, we establish the existence of an square-mean almost automorphic solutions in distribution. Particularly, based on Schauder's fixed point theorem, the existence of square-mean almost automorphic mild solution distribution is obtained by using the condition which is weaker than Lipschitz conditions. We provide an example to illustrate ours results.
Fichier principal
Vignette du fichier
Mamadou-Solym.pdf (180.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02974673 , version 1 (22-10-2020)

Identifiants

Citer

Mamadou Moustapha Mbaye, Solym Manou-Abi. EXISTENCE OF ALMOST AUTOMORPHIC SOLUTION IN DISTRIBUTION FOR A CLASS OF STOCHASTIC INTEGRO-DIFFERENTIAL EQUATION DRIVEN BY LÉVY NOISE. 2020. ⟨hal-02974673⟩
45 Consultations
669 Téléchargements

Altmetric

Partager

More