Causality learning approach for supervision in the context of Industry 4.0 - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Causality learning approach for supervision in the context of Industry 4.0

Résumé

In order to have a full control on their processes, companies need to ensure real time monitoring and supervision using Key performance Indicators (KPI). KPIs serve as a powerful tool to inform about the process flow status and objectives’ achievement. Although experts are consulted to analyze, interpret, and explain KPIs’ values in order to extensively identify all influencing factors; this does not seem completely guaranteed if they only rely on their experience. In this paper, the authors propose a generic causality learning approach for monitoring and supervision. A causality analysis of KPIs’ values is hence presented, in addition to a prioritization of their influencing factors in order to provide a decision support. A KPI prediction is also suggested so that actions can be anticipated.
Fichier principal
Vignette du fichier
LISPEN_JCM_AMZIL_YAHIA_KLEMENT_ROUCOULES.pdf (560.44 Ko) Télécharger le fichier
LISPEN_JCM_2020_AMZIL.pdf (750.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02973983 , version 1 (21-10-2020)

Identifiants

  • HAL Id : hal-02973983 , version 1

Citer

Kenza Amzil, Esma Yahia, Nathalie Klement, Lionel Roucoules. Causality learning approach for supervision in the context of Industry 4.0. Joint Conference on Mechanics, Jun 2020, Aix en Provence, France. ⟨hal-02973983⟩
44 Consultations
137 Téléchargements

Partager

More