Real-Time Optimisation for Online Learning in Auctions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Real-Time Optimisation for Online Learning in Auctions

Optimisation en Temps Réel pour l'Apprentissage en Ligne des Enchères

Lorenzo Croissant
  • Fonction : Auteur
  • PersonId : 1079547
Marc Abeille
  • Fonction : Auteur
Clément Calauzènes

Résumé

In display advertising, a small group of sellers and bidders face each other in up to 10 12 auctions a day. In this context, revenue maximisa-tion via monopoly price learning is a high-value problem for sellers. By nature, these auctions are online and produce a very high frequency stream of data. This results in a computational strain that requires algorithms be real-time. Unfortunately, existing methods inherited from the batch setting suffer O(√ t) time/memory complexity at each update, prohibiting their use. In this paper, we provide the first algorithm for online learning of monopoly prices in online auctions whose update is constant in time and memory.
Fichier principal
Vignette du fichier
Real-Time_Optimisation_for_Online_Learning_in_Auctions.pdf (706.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02971118 , version 1 (19-10-2020)

Identifiants

Citer

Lorenzo Croissant, Marc Abeille, Clément Calauzènes. Real-Time Optimisation for Online Learning in Auctions. International Conference on Machine Learning 2020, Jul 2020, Vienna, Austria. ⟨hal-02971118⟩
79 Consultations
86 Téléchargements

Altmetric

Partager

More