Real-Time Optimisation for Online Learning in Auctions
Optimisation en Temps Réel pour l'Apprentissage en Ligne des Enchères
Résumé
In display advertising, a small group of sellers and bidders face each other in up to 10 12 auctions a day. In this context, revenue maximisa-tion via monopoly price learning is a high-value problem for sellers. By nature, these auctions are online and produce a very high frequency stream of data. This results in a computational strain that requires algorithms be real-time. Unfortunately, existing methods inherited from the batch setting suffer O(√ t) time/memory complexity at each update, prohibiting their use. In this paper, we provide the first algorithm for online learning of monopoly prices in online auctions whose update is constant in time and memory.
Fichier principal
Real-Time_Optimisation_for_Online_Learning_in_Auctions.pdf (706.67 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...