Perturbation Analysis of Quantum Reset Models - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2021

Perturbation Analysis of Quantum Reset Models

Alain Joye

Résumé

This paper is devoted to the analysis of Lindblad operators describing the effective dynamics of tri-partite quantum systems derived from repeated-collision models, known as Quantum Reset Models. We consider a chain of three independent subsystems, coupled by an Hamiltonian term. The two subsystems at each end of the chain are driven, independently from each other, by a reset Lindbladian, while the center system is driven by an Hamiltonian. Under generic assumptions on the coupling term, we prove the existence of a unique steady state for the perturbed reset Lindbladian, analytic in the coupling constant. We further analyze the large times dynamics of the corresponding CPTP Markov semigroup that describes the approach to the steady state. We illustrate these results with concrete exemples corresponding to realistic open quantum systems.
Fichier principal
Vignette du fichier
paper_v3.pdf (438.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02960881 , version 1 (08-10-2020)

Identifiants

Citer

Géraldine Haack, Alain Joye. Perturbation Analysis of Quantum Reset Models. Journal of Statistical Physics, 2021, 183, pp.17. ⟨10.1007/s10955-021-02752-y⟩. ⟨hal-02960881⟩
34 Consultations
56 Téléchargements

Altmetric

Partager

More