Time Series Source Separation with Slow Flows - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Time Series Source Separation with Slow Flows

Résumé

In this paper, we show that slow feature analysis (SFA), a common time series decomposition method, naturally fits into the flow-based models (FBM) framework, a type of invertible neural latent variable models. Building upon recent advances on blind source separation, we show that such a fit makes the time series decomposition identifiable.
Fichier principal
Vignette du fichier
SlowFlows_ICML_workshop.pdf (389.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02959282 , version 1 (06-10-2020)

Identifiants

  • HAL Id : hal-02959282 , version 1

Citer

Edouard Pineau, Sébastien Razakarivony, Thomas Bonald. Time Series Source Separation with Slow Flows. ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2020, (On line ), France. ⟨hal-02959282⟩
71 Consultations
205 Téléchargements

Partager

More