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Abstract
In this paper, we show that slow feature analy-
sis (SFA), a common time series decomposition
method, naturally fits into the flow-based mod-
els (FBM) framework, a type of invertible neural
latent variable models. Building upon recent ad-
vances on blind source separation, we show that
such a fit makes the time series decomposition
identifiable.

1. Introduction
Data blind source separation (BSS) consists in identifying
and extracting the factors from which observed data was
generated. The objective is to find meaningful information
from data in order to help downstream human or machine
learning tasks.

More precisely, identifying components of a (discrete) time
series X ∈ RT×d consists in finding an invertible function
f and some latent signals S ∈ RT×d such that X = f(S).
We call f the mixing function and each latent variable S(i)

∀i ∈ J1, dK is called a source factor. The couple (f, S) is a
latent variable model (LVM) for X . The objective of BSS
is to identify the true factors S or the function f .

Yet, the full problem is ill-posed, since there exists an infinite
number of possible decomposition (Hyvärinen & Pajunen,
1999). Additional assumptions are required to identify the
latent factors. First, the latent signals must be independent.
The decomposition into independent factors is known as
independent component analysis (ICA). When f is linear,
linear ICA solves the BSS problem under certain assump-
tions on the sources. Standard assumption for general data
is that that sources are non-Gaussian (Hyvärinen & Oja,
2000). In the nonlinear general case, assumptions on the
source distribution must be coupled with assumptions on
the mixing function f . Without prior information on the
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mixing function f , we must use an universal approxima-
tion function (e.g. a neural network) coupled with a strong
assumption on the source distribution.

Recently, data decomposition using neural LVMs trained
by likelihood maximization showed encouraging results
(Tschannen et al., 2018). In particular, the recent work
(Khemakhem et al., 2019) gives sufficient conditions of
identifiability of the hidden factors estimated with a neu-
ral generative model. A version of this work proposed in
(Sorrenson et al., 2020) uses flow-based models (FBMs)
(Papamakarios et al., 2019), a particular type of invertible
neural networks, to decompose the data.

In this paper, we build upon (Sorrenson et al., 2020) and fo-
cus on a specific assumption for time series decomposition:
the temporal consistency of the sources, also called slow-
ness. Our contribution consists in showing how slowness
simply fits in FBM framework (we name it slow FBMs),
bringing in FBMs the conditions of identifiability for time
series source separation. We propose experiments to show
that using slow FBMs offers sufficient conditions to identify
time series sources.

We first introduce the notion of slowness in time series de-
composition. Then, we present the FBM framework, that
can learn data decomposition by exact maximum-likelihood
estimation, and show how slowness simply fits in. Finally,
after a review of the relation between slowness and BSS,
we propose experiments to illustrate the interest of using
slow-FBMs instead of FBMs for time series source decom-
position.

2. Slowness in times series decomposition
Slowness is a common temporal structure used in time series
decomposition. It represents the fact that two consecutive
time-steps in a time series have close values. The slower the
time series, the closer the consecutive values. The decom-
position of time series into consistent (i.e. slow) features is
called Slow feature analysis (SFA) (Wiskott & Sejnowski,
2002).

We first introduce some notations. We note Z the estimated
factors from time series data X such that S is said to be
identified if there existsA ∈ Rd×d such that S = AZ. For a
time series variable Z ∈ RT×d we note 〈Z〉 = 1

T

∫ T
0
Ztdt



Time series source separation with slow flows

the mean of Z with respect to time and ∆ the operator
of temporal differentiation ∆Zt = Zt − Zt−1. We note
∆Z =

[
∆Z(1) . . .∆Z(d)

]T ∈ RT×d the set of increment
signals. Without loss of generality, we impose Z0 = 0 such
that ∆Z1 = Z1 is defined.

The slowness is generally seen as the fact that temporal
increments of a time series have low variance. The SFA
problem is then defined as follows:

min
f :X=f(Z)

d∑
i=1

〈∆Z(i)2〉 s.t. 〈Z〉 = 0, ZZT = I (1)

Constraints avoid trivial constant solutions and information
redundancy between the latent factors. It is also standard but
not required to add an ordering constraint for the slowness,
i.e. 〈∆Z(i)2〉 < 〈∆Z(j)2〉 if i < j.

Standard SFA solving Standard approach consists in
building a set of predefined functions h̃ = [h̃1, . . . , h̃K ]T

where h̃k : Rd → R. Then the multivariate signal h̃(X) is
whitened with matrix W and we note h the whitened sig-
nal. In standard approaches a PCA is performed on signal
∆h(X) to extract the slow features (Wiskott & Sejnowski,
2002). The main problem comes from the definition of h̃.
In simple approaches, h̃ is a set of temporal lags, mono-
mials and pairwise interactions between variables. When
the problem is highly non-linear, when there are compli-
cated interactions between variables or when the problem
is high-dimensional, this approach is too weak. Enhancing
the expressiveness of h̃ by expanding the list of possible
functions is not tractable. A way to be exhaustive in h̃ with
a small K is to directly optimize in a general function space
H. Two highly flexible function spaces are commonly used
in machine learning: RKHS (Böhmer et al., 2011) and neu-
ral networks (Schüler et al., 2018; Pfau et al., 2018; Du
et al., 2019).

Maximum-likelihood SFA We can simply transform
SFA into LVM by introducing a probabilistic model for
the estimated sources. Constraints in (1) can be replaced by
Zt ∼ N (0, I) ∀t ∈ J1, T K. Objective (1) can be replaced
by:

Zt|Zt−1 ∼ N (Zt−1, I) (2)

or equivalently ∆Zt ∼ N (0, I) ∀t ∈ J1, T K. In this prob-
abilistic framework, we can solve the SFA problem by
maximum-likelihood (Turner & Sahani, 2007). In particular,
we focus on a recently proposed model to learn data invert-
ible decomposition by maximum-likelihood estimation: the
flow-based models (FBMs) (Papamakarios et al., 2019).

3. Slowness in flow-based models
Flow-based models FBMs are generative models that
transform random variable Z with simple distribution into
random variable X with complex distribution, with a one-
to-one transform. In particular, FBMs are neural LVM, i.e.
a neural network fφ with parameters φ that relates latent
variables Z to data X . We note fφ this neural network with
parameters φ. In particular, FBMs are exact likelihood neu-
ral LVM. It means that the parameters φ can optimized by
directly maximizing the likelihood of the data. To achieve
this property, while the likelihood of the data is unknown
(and generally untractable), FBMs lean on normalizing flows
(NFs) (Rezende & Mohamed, 2015). A NF is a chain of
invertible neural networks {fφr}

R
r=1 with respective param-

eters φr, that enables to pass from a simple distribution p(Z)
(e.g. Gaussian) to a complex distribution p(X) (e.g. data)
via the change of variableX = fφ1

◦· · ·◦fφR(Z) = fφ(Z),
with φ = {φr}Rr=1. Since transformations are invertible, us-
ing the change of variable formula we can define the density
of the data p(X):

p
(
f−1
φ (X)

) R∏
r=1

∣∣∣∣∣det
∂fφr (x)

∂x

∣∣∣∣
x=fφr◦f

−1
φ (X)

∣∣∣∣∣
−1

(3)

where f−1
φ (X) = Z and p(Z) is chosen to be simple and

explicit. The transformations fφr can be arbitrarily complex
as soon as they are invertible. From (3), we see that it is
required that NFs are easily invertible and have Jacobian
determinant easy to compute.

The idea of using FBM to decompose data into independent
components has emerged in (Dinh et al., 2014). They in-
troduced neural normalizing flows to create a one-to-one
generative model that decomposes data into independent
Gaussian variables. Contrary to variational autoencoders
(VAE) (Kingma & Welling, 2013), that also decomposes
data into independent Gaussian variables, the FBMs enable
to directly maximize the likelihood of the data to learn the
neural networks parameters. Finally, the invertibility lets
off the necessity to train a decoder that maximizes the likeli-
hood of the latent space representation with respect to data,
since FBMs preserve the full information about data in the
latent space since they are one-to-one.

Slow flow We have seen that NFs are simple invertible
transformations whose Jacobian determinant is easy to com-
pute. In particular, the previously introduced temporal dif-
ferentiation operator ∆ matches these properties. We note
Z̃ = ∆Z. We now learn a decomposition Z of X by max-
imizing the likelihood of Z̃ = ∆ ◦ f−1

φ (X) under the as-
sumption (2) stating that Z̃t ∼ N (0, I). We note that the in-
verse of ∆ is iteratively defined: ∆−1Z̃t = Z̃t + ∆−1Z̃t−1.
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Hence, ∆−1 can be added as the first NFs of the chain fφ:

X = fφ(Z) = fφ(∆−1Z̃)

Since the Jacobian determinant of the differential operator
is simply 1 (it is a volume-preserving NF), adding slowness
in time series decomposition with FBM requires only to
multiply by the prior density p(Z̃) = p(∆ ◦ f−1

φ (X)) in
(3).

We remark that in SFA, the decorrelation between inferred
latent factors is obtained by whitening the latent represen-
tation. Yet, for example when time series is decomposed
into multiple samples, the slowness may change from one
sample to the other. Hence, on the one hand, whitening each
sample is not appropriate. On the other hand, we found that
computing and applying a global whitening matrix for all
samples causes unstable training. Using FBMs is a natu-
ral solution to keep all the information from data to latent
space without explicitly forcing the variance of each latent
dimension to be strictly positive.

Now that we have a flow-based SFA model, the question is:
can we identify the sources with slow-flows? To answer this
question, we need a short review of the literature treating the
relation between slowness and identifiability in time series
decomposition.

4. Relation between slowness and
identifiability

The literature about SFA and BSS is wide and has regularly
crossed to build new theories, methods and results on time
series decomposition. In this section, we briefly review
these crossroads.

We have mentionned above that BSS requires assumptions
about the structure of hidden sources. First, without prior
knowledge, the sources are assumed independent, such that
ICA is the main BSS approach. In linear ICA, a common
assumption is the non-Gaussianity of the sources (Hyvärinen
& Oja, 2000). When data is time series, an alternative
assumption is the slowness (Hyvärinen et al., 2001). In
fact, if Z are slow uncorrelated features (see SFA problem
above) then ∀t, i, Z(i)

t ≈ Z
(i)
t−1. Hence, the covariance

between 〈Z(i)
1:T−1Z

(j)
2:T 〉 ≈ 〈Z(i)Z(j)〉 = δij . It is shown in

(Tong et al., 1991) that having diagonal instantaneous and
lagged covariance is a sufficient condition for independence.

In (Blaschke et al., 2007), they propose a nonlinear BSS
method by coupling linear ICA with nonlinear SFA. In
(Sprekeler et al., 2014), they enrich the SFA-based nonlin-
ear ICA with an iterative extraction of the sources. The
later showed that if the sources have different autocorre-

lation functions, then the true sources are identifiable. It
constitutes the first theoretically grounded nonlinear BSS. In
(Hyvarinen & Morioka, 2017), they propose a stronger iden-
tifiability condition than (Sprekeler et al., 2014) by trans-
forming the sought temporal consistency into a contrastive
learning problem (Baldi & Pineda, 1991). They train a neu-
ral network to embed time seriesX such that a classifier can
discriminate [Xt−1, Xt] from [Xt∗ , Xt], with t∗ a random
time index. They show that, asymptotically and using the
universal approximation power of neural networks, the true
sources are in the final hidden layer of the neural networks.
This classification-based ICA was previously proposed for
nonstationary time series in (Hyvarinen & Morioka, 2016)
and extended to general ICA in (Hyvarinen et al., 2019).

Subsequently, (Khemakhem et al., 2019) proposed a similar
identifiability proof, but using maximum-likelihood estima-
tion instead of a contrastive estimation. In particular, they
show that using a conditionally factorial prior p(Zt|U) for
the sources instead of a simple factorial prior p(Zt) is a con-
dition for identifiability. To explicitly extract the estimated
sources, they pick p(Zt|U) into the exponential family of
distributions, where the components are respectively func-
tions of Z and U . Finally, in (Sorrenson et al., 2020), they
use FBMs to complete the last-mentioned identifiability
proof with truly invertible functions. In theory, this auxil-
iary variable U can be for example Zt−1, finding back the
notion of slowness. Yet, this assumption is not experimented
in the aforementioned papers.

Identifiability in slow-FBMs We therefore can use the
recent results of (Khemakhem et al., 2019; Sorrenson et al.,
2020) to understand that the estimated features with slow-
FBMs are the true sources up-to linear demixing. In par-
ticular, in the limit of infinite data and with respect to
the Gaussian assumptions of SFA, after training we have
S = Af−1

φ (X). Matrix A is generally found by solving
the linear ICA of the invertible embedding Z = f−1

φ (X).
Hence, adding a simple slow flow at the beginning of the
chain of normalizing flows is a sufficient condition for the
separation of source signals.

5. Experiments
In this section, we propose two simple experiments to show
how adding a slow-flow in a FBM enables time series source
separation.

5.1. Setup and implementation details

In both experiments, we compare slow-FBM with standard
FBM (the only difference is the absence of the slow flow)
and with linear ICA (to verify that the problem is not linearly
identifiable). We do not compare to methods cited in the
related work since we want to focus on the main point of
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this short paper, that is: the slowness is a way to induce
identifiability in time series decomposition.

We use the RealNVP (Dinh et al., 2016), a standard flow-
based model, as the invertible embedding function fφ.

5.2. Decomposition into structural components

In this first experiment, we use a common example: the
decomposition of time series into structural components.
The structural components consist in trends, cycles, the
seasonality and the irregularity. The trend is a monotone
long term signal. The cycle is a signal that affects the
observations at random frequencies. Seasonality is a signal
that affects the time series at fixed frequency. The exogenous
input can be a control variable, an environment factor or
some random noise. We generate one seasonal signal, two
asynchronous cycles and one trend. These four components
are corrupted by additive Gaussian noise N (0, 0.2) (see
left plot in Figure 1). The four components are assumed
independent.

For the experiment, we mixed the sources S with a randomly
initialized FBM.

Figure 1. BSS of mixed structural components. Left: Ground truth
independent components. Middle: Estimated components with
standard FBM. Right: Estimated components with Slow-FBM.
The maximum absolute mean correlations with true signal are
given in Table 1.

ICA FBM + ICA S-FBM S-FBM + ICA
58.2±7.7 66.2± 3.7 79.6±3.1 94.3± 3.1

Table 1. Maximum absolute correlation between estimated and
true sources. S-FBM stands for slow-FBM.

The results clearly show that adding slowness into the FBM
model enables to identify the sources. Moreover, we can
see that even before the final demixing linear ICA, the slow-
FBM gives reasonably good decomposition of the data.

5.3. Audio demixing

We propose a second standard experiment. We propose to
recover mixed audio samples. We chose four random instru-
mental samples and mixed them with a randomly initialized
FBM. First 75% of the signal serves as train set, the rest as
test set. The four components are assumed independent.

Figure 2. BSS of mixed audio, on test sample. Left: Ground truth
independent components. Middle: Estimated components with
standard FBM. Right: Estimated components with Slow-FBM.
The maximum absolute mean correlations with true signal are
given in Table 2

We observe that the decomposition with slow-FBM is noisy,
in particular for the sparse signal (number 3 from top). This
is due to the little size of the data we used. Adding more
data improves the identifiability of true sources (asymptotic
result in (Khemakhem et al., 2019)).

ICA FBM + ICA S-FBM S-FBM + ICA
52.0±1.7 68.8± 1.7 77.4±0.9 95.7± 3.4

Table 2. Maximum absolute correlation between estimated and
true sources. S-FBM stands for slow-FBM.

The results again clearly show that adding slowness into
the FBM model enables to identify the sources. Moreover,
we can see that even before the final demixing linear ICA,
the slow-FBM gives reasonably good decomposition of the
data.

6. Conclusion and perspectives
In this short paper, we analyzed a simple way to induce
identifiability in time series decomposition with flow-based
models using slowness. In particular, we used the fact that
temporal differentiation is an invertible transform that can
be plugged in a chain of normalizing flows. We then related
the addition of slowness into FBM to the recent nonlinear
blind source separation methods to finally show in simple
experiments the advantage of using the slow-FBM instead
of FBM for time series decomposition.
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