Implementing Persistence-Based Clustering of Point Clouds in the Topology ToolKit - Archive ouverte HAL
Chapitre D'ouvrage Année : 2021

Implementing Persistence-Based Clustering of Point Clouds in the Topology ToolKit

Ryan Cotsakis
  • Fonction : Auteur
Jim Shaw
  • Fonction : Auteur
Julien Tierny
Joshua A Levine
  • Fonction : Auteur

Résumé

We show how the scalar field topology features of the Topology ToolKit (TTK) can be leveraged in a pipeline for persistence-based clustering of point clouds. While TTK provides numerous features for computing topological structures of scalar fields on unstructured meshes, prior to this work, it allowed for only basic point cloud input. In this work, we implemented two new modules in TTK: one for sampling scalar fields based on either distance or density of the point cloud and a second for computing persistence-based clusters. Both modules provide heuristics for automatically specifying key thresholds so as to simplify user interaction. This document outlines the implementation details of the two modules and provides experimental results that demonstrate their modularity and utility.
Fichier principal
Vignette du fichier
cotsakis_topoinvis20.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02950542 , version 1 (28-09-2020)

Identifiants

Citer

Ryan Cotsakis, Jim Shaw, Julien Tierny, Joshua A Levine. Implementing Persistence-Based Clustering of Point Clouds in the Topology ToolKit. Topological Methods in Data Analysis and Visualization VI, Springer, pp.343-357, 2021, Mathematics and Visualization, ⟨10.1007/978-3-030-83500-2_17⟩. ⟨hal-02950542⟩
172 Consultations
318 Téléchargements

Altmetric

Partager

More