R\'ealisations galoisiennes explicites de certaines familles de $2$-groupes
Résumé
In this paper, we construct, for some $2$-groups $G$, explicit Galois extensions $E/\mathbb{Q}(T)$ of group $G$ with $E\cap\overline{\mathbb{Q}}=\mathbb{Q}$. We also provide explicit arithmetic progressions of integers $t_0$ such that the specialization $E_{t_0}/\mathbb{Q}$ of $E/\mathbb{Q}(T)$ at $t_0$ has Galois group $G$.