Subspace Clustering and Feature Typicality Degrees: a Prospective Study - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Subspace Clustering and Feature Typicality Degrees: a Prospective Study

Résumé

Subspace clustering can offer, beside a decomposition of data into homogeneous and distinct clusters, a charac-terisation of the subspaces in which the clusters live. This paper explores the possibility of capturing the notion of characteristic features in the framework of typicality degrees, as typical features. To that aim, it discusses the notion of typicality degrees for features and proposes an Alternating Cluster Estimation algorithm, named TbSC, to exploit these degrees within subspace clustering. It illustrates their differences experimentally using simple data sets.
Fichier principal
Vignette du fichier
lesotRevaultDAllonnes.pdf (277.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02935279 , version 1 (10-09-2020)

Identifiants

Citer

Marie-Jeanne Lesot, Adrien Revault d'Allonnes. Subspace Clustering and Feature Typicality Degrees: a Prospective Study. The 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020), Jul 2020, Glasgow, United Kingdom. ⟨10.1109/FUZZ48607.2020.9177704⟩. ⟨hal-02935279⟩
55 Consultations
141 Téléchargements

Altmetric

Partager

More