Improving lipid mapping in Genome Scale Metabolic Networks using ontologies - Archive ouverte HAL
Article Dans Une Revue Metabolomics Année : 2020

Improving lipid mapping in Genome Scale Metabolic Networks using ontologies

Nathalie Poupin
Florence Vinson
Arthur Moreau
  • Fonction : Auteur
Aurélie Batut
  • Fonction : Auteur
  • PersonId : 1088475
Sarah Guez
  • Fonction : Auteur
Spiro Khoury
  • Fonction : Auteur
Anthony Tournadre
  • Fonction : Auteur
  • PersonId : 1106388
Corinne Pouyet
Fanny Viars
  • Fonction : Auteur
Justine Bertrand-Michel
Fabien Jourdan

Résumé

Introduction To interpret metabolomic and lipidomic profiles, it is necessary to identify the metabolic reactions that connect the measured molecules. This can be achieved by putting them in the context of genome-scale metabolic network reconstructions. However, mapping experimentally measured molecules onto metabolic networks is challenging due to differences in identifiers and level of annotation between data and metabolic networks, especially for lipids.Objectives To help linking lipids from lipidomics datasets with lipids in metabolic networks, we developed a new matching method based on the ChEBI ontology. The implementation is freely available as a python library and in MetExplore webserver.Methods Our matching method is more flexible than an exact identifier-based correspondence since it allows establishing a link between molecules even if a different level of precision is provided in the dataset and in the metabolic network. For instance, it can associate a generic class of lipids present in the network with the molecular species detailed in the lipidomics dataset. This mapping is based on the computation of a distance between molecules in ChEBI ontology.Results We applied our method to a chemical library (968 lipids) and an experimental dataset (32 modulated lipids) and showed that using ontology-based mapping improves and facilitates the link with genome scale metabolic networks. Beyond network mapping, the results provide ways for improvements in terms of network curation and lipidomics data annotation.Conclusion This new method being generic, it can be applied to any metabolomics data and therefore improve our comprehension of metabolic modulations.
Fichier principal
Vignette du fichier
s11306-020-01663-5.pdf (1.78 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02935172 , version 1 (08-12-2023)

Licence

Identifiants

Citer

Nathalie Poupin, Florence Vinson, Arthur Moreau, Aurélie Batut, Maxime Chazalviel, et al.. Improving lipid mapping in Genome Scale Metabolic Networks using ontologies. Metabolomics, 2020, 16 (4), ⟨10.1007/s11306-020-01663-5⟩. ⟨hal-02935172⟩
138 Consultations
49 Téléchargements

Altmetric

Partager

More